THE BULLETIN OF THE

USER GROUP

Contents:

1 Letter of the Editor
2 Editorial - Preview
Michel Beaudin
3 Exercises for Résumé 1 - Part 2
20 DERIVE and CAS-TI User Forum
Development of DERIVE
DERIVE and WINDOWS 11
Customized Menus for DOS-DERIVE
Tania Koller
26 Who Plays Video Games?
Josef Böhm
52 On the Trace of the Spider

DNL 128	Information	DNL 128

You can download the full collection of David Halprin's papers from academia.edu
https://independent.academia.edu/DavidHalprin

Other websites which might be interesting:

Clark Kimberling's Encyclopedia of Triangle Centers - ETC https://faculty.evansville.edu/ck6/encyclopedia/ETC.html

Paper from Simon Plouffe:
http://plouffe.fr/Inverseofprimes/La\ forme\ de\ bn\ mod\ p.pdf
Explore great Graphics:
https://lengler.dev/TimesTableWebGL/
Families of Functions Modular Course (TI)
https://education.ti.com/en/resources/family-of-functions
Notice and Wonder with TI Tools
https://sites.google.com/view/fofwonder/home
Understanding Probability (Five YouTube presentations)
https://www.youtube.com/playlist?list=PLRdShFxKAjBLhuBWDB3lyCv9n6jiNFk4J
Michael de Villiers' Dynamic Mathematics Learning website
http://dynamicmathematicslearning.com/homepage4.html
A collection of tasks for German end examination mathematics and other subjects https://www.iqb.hu-berlin.de/abitur/sammlung/mathematik/

New STEM books K-12
https://www.nsta.org/bsb23
See also page 56.

Dear DUG Members,

It really happened as I announced in the last DNL. The last newsletter from 2022 was not finished until 2023. I had planned to include a few more contributions, but it became "only" three, but these are very detailed.
In the tasks of Michel Beaudin, the treatment of the not so well-known Lambert W-function should find your interest. It kept me very busy at least and led to an intensive communication with Michel. In the MTH128.zip file you can find an update of Michel's extensive library for TI-Nspire including description, thanks Michel.

Some time ago (TI-92 time), Tania Koller was part of an international project group. In this context, she conducted a survey of her students about their use of video games with the intention of processing the data obtained in various ways with the students. She had a lot of success with her students and I would like to thank Tania for the permission to translate her extensive material and include it in the DNL.
Maybe this can also be an incentive for you to ask your students about their habits with smartphones, social media, leisure activities, ... and thus gain realistic material for statistics lessons?
I came across the "Way of the Spider" via the beautiful puzzles regularly published by Heinrich Hemme at www.spektrum.de/. I have extended this puzzle, the solution of which is very simple, with a three-dimensional question - which is not so elementary. As so often before, an exchange with Wolfgang Alvermann resulted, who then also worked on this problem. His German version is included in MTH128.zip. The small picture shows a paper model of the 3D-task in front of the DERIVE solution on my PC.
The User Forum also became very extensive this time and for once only concerns DERIVE topics.
Please note the numerous links and the Ross Barnes' question on the first inside page.

I remain with my best wishes as ever Yours

Liebe DUG-Mitglieder,
es ist wirklich so gekommen, wie ich im letzten DNL angekündigt habe. Der letzte Newsletter aus 2022 wurde erst 2023 fertig. Ich hatte schon vor, einige Beiträge mehr unterzubringen, es sind aber „nur" drei geworden, diese aber sehr ausführlich.

In den Aufgaben von Michel Beaudin soll die Behandlung der nicht so bekannten Lambert W-Funktion Ihr Interesse finden. Mich hat sie sehr beschäftigt und zu einer intensiven Kommunikation mit Michel geführt. In der MTH128.zip-Datei könnt Ihr ein Update von Michels umfangreicher Bibliothek für TI-Nspire samt Beschreibung finden, danke Michel.
Tania Koller war vor einiger Zeit (TI-92 Zeit!) Teil einer internationalen Projektgruppe. In diesem Rahmen hat sie eine Befragung ihrer Schüler über deren Umgang mit Videospielen durchgeführt mit der Absicht, die so gewonnen Daten auf verschiedene Weise mit den Schülern aufzuarbeiten. Sie hatte damit bei ihren Schülern viel Erfolg. Ich bedanke mich bei Tania für die Erlaubnis, ihr umfangreiches Material übersetzen und in den DNL aufnehmen zu dürfen.
Vielleicht kann dies auch ein Anreiz für Euch sein, Eure Schüler über die Gewohnheiten mit Smartphone, Social Media, Freizeitaktivitäten, \ldots zu befragen und so realistisches Material für den Statistikunterricht zu gewinnen?

Auf den „Weg der Spinne" bin ich über die schönen Rätsel gestoßen, die regelmäßig von Heinrich Hemme auf www.spektrum.de/ veröffentlicht werden. Ich habe dieses Rätsel, dessen Lösung sehr einfach ist, mit einer dreidimensionalen Fragestellung erweitert - die nicht so elementar ist.
Wie schon so oft ergab sich ein Austausch mit Wolfgang Alvermann, der dann dieses Rätsel auch bearbeitete. Seine deutschsprachige Version ist in MTH128.zip enthalten. Das kleine Bild zeigt ein Papiermodell der 3D-Aufgabe vor der DERIVE-Lösung auf meinem PC.
Bitte beachtet die zahlreichen Links und die Frage von Ross Barnes auf der ersten Innenseite.

Ich verbleibe wie immer mit den besten Wünschen

P	2	E	D	I	T	O	R	I	A	I	

The DERIVE-NEWSLETTER is the Bulletin of the DERIVE \& CAS-TI User Group. It is published at least four times a year with a content of 40 pages minimum. The goals of the $D N L$ are to enable the exchange of experiences made with DERIVE, TICAS and other CAS as well to create a group to discuss the possibilities of new methodical and didactical manners in teaching mathematics.

Editor: Mag. Josef Böhm

D'Lust 1, A-3042 Würmla, Austria
Phone: $\quad++43-(0) 6603136365$
e-mail: nojo.boehm@pgv.at

Contributions:

Please send all contributions to the Editor. Non-English speakers are encouraged to write their contributions in English to reinforce the international touch of the $D N L$. It must be said, though, that non-English articles will be warmly welcomed nonetheless. Your contributions will be edited but not assessed. By submitting articles, the author gives his consent for reprinting it in the $D N L$. The more contributions you will send, the more lively and richer in contents the DERIVE \& CAS-TI Newsletter will be.

Next issue:
March 2023

Preview: Contributions waiting to be published

Some simulations of Random Experiments, J. Böhm, AUT, Lorenz Kopp, GER
Wonderful World of Pedal Curves, J. Böhm, AUT
Simulating a Graphing Calculator in DERIVE, J. Böhm, AUT
Cubics, Quartics - Interesting features, T. Koller \& J. Böhm, AUT
Logos of Companies as an Inspiration for Math Teaching
Exciting Surfaces in the FAZ, BooleanPlots.mth, P. Schofield, UK
Old traditional examples for a CAS - What's new? J. Böhm, AUT
Mandelbrot and Newton with DERIVE, Roman Hašek, CZ
Tutorials for the NSpireCAS, G. Herweyers, BEL
Dirac Algebra, Clifford Algebra, Vector-Matrix-Extension, D. R. Lunsford, USA
Another Approach to Taylor Series, D. Oertel, GER
Charge in a Magnetic Field, H. Ludwig, GER
More Applications of TI-Innovator ${ }^{T M}$ Hub and $\mathrm{TI}-\mathrm{Innnovator}^{\text {TM }}$ Rover
Surfaces and their Duals, Cayley Symmetroid, J. Böhm, AUT
A Collection of Special Problems, W. Alvermann, GER
DERIVE Bugs? D. Welz, GER
Tweening \& Morphing with TI-NspireCX-II-T, J. Böhm. AUT
The Gap between Poor and Rich, J. Böhm, AUT
More functions from M. Myers and from Bhuvanesh's Mathtools-library
TaxiCab Conics, Two alternate Approaches to Conics, R. Haas, USA
QR-Code light, Random numbers following a given distribution
Properties of Polygons, Quartiles, F. de Jesús Martínez Vargas, Mexico
Penalty Shootout Mathematics, B. Grabinger, GER
153 is another Special Number, and others

[^0]Here we continue Michel Beaudin's list of exercises connected with his Résumé 1 presented in earlier DNLs.

Exercise list for Summary 1 - Part 2

Problems 3 Equation solving and the LambertW function
Solve the following equations by hand so as to rewrite them in the form $y e^{y}=z$ whose solutions are known to be $y=W(k, z)$ where " W " is the Lambert W function (k one of its branches). Note that the "solve" command in your symbolic system should find, at least numerically, the real solutions of the equations of questions b) to i). In connection with the LambertW function programmed in the Nspire kit_ets_mb.tns library ${ }^{[*]}$ or the one included in Maple or the ProductLog function in Mathematica, this allows you to check your answers for these exercises.
a) Solve an equation of the type $a e^{b t}+c t+d=0$ where a, b, c, and d are four non-zero constants (possibly complex) and t is the variable with respect to which we solve. Note that this type of equation appears when we look for the time for an object in free fall to reach the ground and when we assume the air resistance force is proportional to the speed of the object.
b) Find all real solutions of the equation $\ln (x)=4-x$.
c) Find all real solutions of the equation $x^{4}=3^{x}$.
d) Find all real solutions of the equation $e^{3 x}=x^{2}+6 x+9$.
e) Find all real (and positive) solutions of the equation $x^{x}=\frac{4}{5}$.
f) Find all real and some complex solutions of the equation $\left(\frac{1}{2}\right)^{x}=x^{8}$.
g) Solve the equation $x^{6}=1.1^{-x}$ and give all real and complex solutions. Check that the complex solution you found by Newton's method to problem 1 f) is included in one of the functions $W_{0}(z)$ and $W_{-1}(z)$ which are denoted by Lambert $W(0, z)$ and $\operatorname{Lambert} W(-1, z)$ respectively in the kit_ets_mb library.
h) Find all real solutions of the equation $2^{x}=x+5$.
i) Find all solutions of the equation $e^{-x^{2}}=x$. More generally, show that an equation of the form $a b^{x^{c}}=x^{d}$ can be solved via LambertW.
${ }^{[*]}$ For your convenience kit_ets_mb.tns is included in MTH128.zip.

P 4	Michel Beaudin: Exercises for Résumé 1	DNL 128

Problem 3c)

Find all real solutions of the equation $x^{4}=3^{x}$.
A graph in a "standard" window shows two solutions but it is clear that a third solution exists since the exponential function 3^{x} will eventually dominate the power function x^{4} because of the de l'Hospital rule. A value table also confirms this. See figure 8. Anyway, the Nspire solver finds the three approximate values very quickly. Let's find those three values.

The four unit roots are $1,1, i$ and $-i$ but we are only looking for real solutions, so we can rewrite the equation as

$$
\left(3^{x}\right)^{1 / 4}= \pm x
$$

Thus $3^{x / 4}= \pm x$, hence $e^{\frac{x}{4} \ln (3)}= \pm x$, hence $x e^{-\frac{x}{4} \ln (3)}= \pm 1$, hence $-\frac{x}{4} \ln (3) e^{-\frac{x}{4} \ln (3)}= \pm \frac{\ln (3)}{4}$. We have thus obtained an equation of the form $y e^{y}=z$ of which we know that the solutions are given by $y=\operatorname{Lambert} W(k, z)=" W(k, z) "$. Only the branches $k=0$ and $k=1$ provide real values when $z \geq-1 / e \approx-0.367879$. And $-\ln (3) / 4$ is about -.274653 So the three
real solutions are

$$
-\frac{4}{\ln (3)} W\left(0, \frac{\ln (3)}{4}\right),-\frac{4}{\ln (3)} W\left(0, \frac{-\ln (3)}{4}\right) \text { and }-\frac{4}{\ln (3)} W\left(-1, \frac{-\ln (3)}{4}\right)
$$

Figure 8
You can confirm these three values if the LambertW function is implemented in your symbolic system or has been programmed, which the author of these lines has done in Nspire:
$\left|\begin{array}{rr}w(k, z):=k \text { it_ets_mblambertw }(k, z) & \text { Done } \\ \frac{-4}{\ln (3)} \cdot w\left(0, \frac{\ln (3)}{4}\right) & -0.802246 \\ \frac{-4}{\ln (3)} \cdot w\left(0, \frac{-\ln (3)}{4}\right) & 1.51678 \\ \frac{-4}{\ln (3)} \cdot w\left(-1, \frac{-\ln (3)}{4}\right) & 7.17476 \\ \triangle \operatorname{solve}\left(x^{4}=3^{x}, x\right) & x=-0.802246 \text { or } x=1.51678 \text { or } x=7.17476\end{array}\right|$

Figure 9

DNL 128	Michel Beaudin: Exercises for Résumé 1	p 5

Remark: if we had asked to find all the solutions of the equation $x^{4}=3^{x}$, it would have been enough by using α to designate one of the 4 fourth roots of 1 to write that the equation is equivalent to

$$
x e^{-\frac{x}{4} \ln (3)}=\alpha \Leftrightarrow-\frac{x}{4} \ln (3) e^{-\frac{x}{4} \ln (3)}=-\alpha \frac{\ln (3)}{4} \Leftrightarrow x=-\frac{4}{\ln (3)} W\left(k,-\alpha \frac{\ln (3)}{4}\right)
$$

with α each taking one of the four values $1,1, i$ and $-i$. Here are some complex solutions (Figure 10) and the graphs in Figure 11 of the real (red) and imaginary (blue) parts of the equation $(x+i y)^{4}=3^{x+i y}$.

$$
\left.\begin{array}{|l|l|}
\frac{-4}{\ln (3)} \cdot w\left(0, \frac{i \cdot \ln (3)}{4}\right) & -0.231879-0.909196 \cdot \boldsymbol{i} \\
\frac{-4}{\ln (3)} \cdot w\left(0, \frac{-i \cdot \ln (3)}{4}\right) & -0.231879+0.909196 \cdot \boldsymbol{i} \\
\frac{-4}{\ln (3)} \cdot w\left(-1, \frac{i \cdot \ln (3)}{4}\right) & \\
\frac{-4}{\ln (3)} \cdot w\left(-1, \frac{-i \cdot \ln (3)}{4}\right) & 9.18461+8.42098 \cdot \boldsymbol{i} \\
\frac{-4}{\ln (3)} \cdot w\left(2, \frac{i \cdot \ln (3)}{4}\right) & 11.574+21.0462 \cdot i \\
\frac{-4}{\ln (3)} \cdot w\left(-2, \frac{i \cdot \ln (3)}{4}\right) & 12.9878+32.9481 \cdot \boldsymbol{i}
\end{array} \right\rvert\,
$$

Figure 10

Figure 11
(See Michel's trick to produce the implicit plot of real and imaginary parts with TI-Nspire at the end of this contribution!)

The DERIVE result using the lambertw-function, programmed following Michel's Nspire procedure:
$-\frac{4}{\operatorname{LOG}(3)} \cdot\left[\operatorname{lambertw}\left(0, \frac{\operatorname{LOG}(3)}{4}\right), \operatorname{lambertw}\left(0,-\frac{\operatorname{LOG}(3)}{4}\right), \operatorname{lambertw}\left(-1,-\frac{\operatorname{LOG}(3)}{4}\right)\right]$

p 6	Michel Beaudin: Exercises for Résumé 1	DNL 128

Problem 3d)

Solving equations and the LambertW function. Find all real solutions of the equation $e^{3 x}=x^{2}+6 x+9$.

Figure 1 shows a screen capture of TI-Nspire which indicates that we will have three solutions. The lower right part sets the stage for using LambertW.

Figure 1
Change of variable $y=x+3$ thus transforms the equation into $e^{3 y} e^{-9}=y^{2}$. Taking the square root of each side, we have $e^{3 y / 2} e^{-9 / 2}= \pm y \Leftrightarrow-\frac{3}{2} y e^{-3 y / 2}= \pm \frac{3}{2} e^{-9 / 2}$. Notice that $-\frac{1}{e}<-\frac{3}{2} e^{-9 / 2}<0$. Therefore we have $y=-\frac{2}{3} \operatorname{Lambert} W\left(0, \frac{3}{2} e^{-9 / 2}\right),-\frac{2}{3} \operatorname{LambertW}\left(0,-\frac{3}{2} e^{-9 / 2}\right),-\frac{2}{3} \operatorname{Lambert} W\left(-1,-\frac{3}{2} e^{-9 / 2}\right)$.

Returning to " x ", we then have the following three answers:

$$
\left\{\begin{array}{l}
x=\frac{-2}{3} \cdot \text { kit_ets_mblambertw }\left(0, \frac{3}{2} \cdot e^{\frac{-9}{2}}\right)-3 \cdot x=-3.01093 \\
x=\frac{-2}{3} \cdot \text { kit_ets_mbllambertw }\left(0, \frac{-3}{2} \cdot e^{\frac{-9}{2}}\right)-3 \cdot x=-2.9887 \\
x=\frac{-2}{3} \cdot \text { kit_ets_mblambertw }\left(-1, \frac{-3}{2} \cdot e^{\frac{-9}{2}}\right)-3 \cdot x=0.908824
\end{array}\right.
$$

Figure 2

Remark:

As Michel wrote above, he has produced a function lambertw (k, w) for TI-Nspire. Since this is not a function to meet at every corner in mathematics, I felt challenged to program lambertw(k,w) for DERIVE, too. This was not so easy and was the starting point for an interesting exchange of mails, functions and figures with Michel Beaudin.

From Josef to Michel

Dear Michel,
I am now working on DNL128 which will include some of your exercises.
In Chapter 3 you have examples involving the LambertW-function and you are using your great N -Spire library.

Do you think that it might make sense to transfer your function to DERIVE? MATHEMATICA's ProductLog function is always $W(0, x)$? What if I'd like to find $W(-1, \ldots)$ or $W(2, \ldots)$.

Sorry for my stupid question, but I am really not an expert for this function.

From Michel to Josef

Dear Josef, let me first explain why I have programmed LambertW in Nspire. When I was teaching MAT805, students who were coming from North Africa were not familiar with the use of CAS. The other ones (those from ETS or elsewhere in Quebec or those from France) knew (at least) Matlab (also Nspire in the case of those from ETS). So I told the North Africa students to download a trial version of Nspire because it is easy to use (compare to the "big CAS" Maple, Mathematica) and a contact at TI Canada was able to give me some activation codes for extending the trial version for one year (so long enough for the students to use Nspire during all the semester).
During an exam (I join my midterm exam of Winter 2022 for your information with the solutions done using Nspire), my students were asked to solve some equations whose answer involves Lam-
bertW. Because the "solve" command of Nspire does not contain LambertW, I have decided to program it because it was a way to check (=validate) their answers. And also it is still important for me to continue to use pencil and paper AND use CAS to validate answers.

But I don't think my programming is so good --even though I did not find bugs so far. If you want to "export" it to Derive, no problem with me. What can help you --and this is what I first looked at-- is the article about LambertW (mainly starting at page 342). It helped me a lot to program LambertW in Nspire.
https://www.researchgate.net/publication/2458364 On the Lambert W Function

From Josef to Michel

I started programming the function with DERIVE and came across an interesting fact. You can find one call of LambertW(0,5i) on the Nspire and the same call with DERIVE. They are different, but when checking the solutions for the system of equations both solutions seem to be correct?

p 8	Michel Beaudin: Exercises for Résumé 1	DNL 128

```
lambertw \((0,5 \cdot i)=[-0.2233736303,6.247446140]\)
\(\left[(x \cdot \operatorname{CoS}(y)-y \cdot \operatorname{SIN}(y)) \cdot e^{x}-\operatorname{RE}(w),(x \cdot \operatorname{SIN}(y)+y \cdot \operatorname{CoS}(y)) \cdot e^{x}-\operatorname{IM}(w)\right]\)
\(\left[((-0.2233736303) \cdot \operatorname{COS}(6.24744614)-6.24744614 \cdot \operatorname{SIN}(6.24744614)) \cdot e^{-0.2233736303}-\operatorname{RE}(5 \cdot i),((-0.22\right.\)
\(\left[3.161375020 \cdot 10^{-9}, 0\right]\)
\(\left[(1.19805 \cdot \cos (0.917331)-0.917331 \cdot \operatorname{SIN}(0.917331)) \cdot e^{1.19805}-\operatorname{RE}(5 \cdot i),(1.19805 \cdot \operatorname{SIN}(0.917331)+0\right.\).
```


[0.0000003125470258, 0.000009732000179]

From Michel to Josef

Now, what you did in Derive yields LambertW ($1,5 \mathrm{i}$) and not LambertW $(0,5 \mathrm{i})$: I have also checked using Maple. Also, in a calculator page of Nspire, if you subsitute the last answer into an expression, use "ans" instead of copying the answer (because you are "scractching some hiden decimals). See the Nspire file "LambertW_check". Take care,

From Josef to Michel

Thanks for the attachments. I will exchange the old version of your library by the new one (and add a note in the next DNL!).
It is again an interesting communication - at least for me!
What concerns the LambertW function. I had no problem with the "accuracy" but I am still surprised that Nspire and DERIVE obtain different solutions for the system of equations.
I attach my DERIVE file. Entering lambertw($0,5 \mathrm{i}$) should lead to the last if-clause in my function (and it does, I checked). But the solutions are the same as obtained in the if-clause above!

From Michel to Josef

Dear Josef, when I used my "newtons2" function (which is a copy of Derive's Newtons but only for 2 variables), I get the same answer as Derive. So, I suspect that the "zeros" function of Nspire is not exactly the same function and this is why (I think) this yields different values. See the file.

```
kit_ets_mb\lambertw}(0,5\cdot\boldsymbol{i})=1.19805+0.917331\cdot\boldsymbol{i
u:=(x\cdot\operatorname{cos}(y)-y\cdot\operatorname{sin}(y))\cdot\mp@subsup{\mathbf{e}}{}{x}\cdot(x\cdot\operatorname{cos}(y)-y\cdot\operatorname{sin}(y))\cdot\mp@subsup{\mathbf{e}}{}{x}
v=(x\cdot\operatorname{sin}(y)+y\cdot\operatorname{cos}(y))\cdot\mp@subsup{e}{}{x}\cdot(x\cdot\operatorname{sin}(y)+y\cdot\operatorname{cos}(y))\cdot\mp@subsup{e}{}{x}
```



```
There is still no real implicit 2D plotting in Nspire. Using good old Derive, on next page we
can see 3 solutions (among the infinity) of the equation
z}\cdot\mp@subsup{\mathbf{e}}{}{z}=0+5\cdot\boldsymbol{i
We see in the second quadrant what Newtons yields.
```


DNL 128

From Josef to Michel

here I am again. It was yesterday afternoon while I was watching any stuff on TV - in fact I was not really watching but had my thoughts in the next DNL. Suddenly I had a lightning in my brain - until then I did not realize the meaning of the parameter " k " in your LambertW function, since ProuctLog does without k .

I know that LambertW is multivalued for complex numbers but I didn't read your sentence
"Only the branches $k=0$ and $k=1$ provide real values when $z \geq 1 / e \approx-0.367879$. And $-\ln (3) / 4$ is about -0.274653 ." with understanding. So, k is nothing else than a sort of key (switch) to get any of the many complex solutions. Is that right?

And for only a few cases $(\operatorname{IM}(w)=0$ and $R E(w) \geq-1 / e \vee R E(w)<0$ and $k=0 \wedge \operatorname{IM}(w)=0 \wedge R E(w) \geq-$ $1 / \mathrm{e}$) a real solution is possible which can be found using the key 0 or -1 .
I must admit I found my idea confirmed by studying once more your program. I think, that I've got it now. Needed some time, Shame on me.

I add a word document with some results of my DERIVE LambertW program together with a possible LambertW2 program which can be used if the first one fails (because of the problems with the Newton Method procedure).

Many thanks for your patience and providing a chance for my brain to experience an "enlightenment".

kit_ets_mblambertw $(0,0)$	0
kit_ets_mblaambertw $(0, \boldsymbol{e})$	1
kit_ets_mblambertw $\left(0, \frac{-\pi}{2}\right)$	$\frac{\pi}{2} \cdot \boldsymbol{i}$
kit_ets_mblaambertw $\left(-1, \frac{-\pi}{2}\right)$	$\frac{-\pi}{2} \cdot \boldsymbol{i}$
kit_ets_mblambertw $(1,-\pi \cdot \boldsymbol{i})$	$\pi \cdot \boldsymbol{i}$
kit_ets_mblambertw $(-1, \pi \cdot \boldsymbol{i})$	$-\pi \cdot \boldsymbol{i}$
kit_ets_mblaambertw $\left(1, \frac{3 \cdot \pi}{2}\right)$	$\frac{3 \cdot \pi}{2} \cdot \boldsymbol{i}$
kit_ets_mblambertw $\left(-1, \frac{-1}{\boldsymbol{e}}\right)$	-1
kit_ets_mblambertw $\left(0, \frac{-1}{\boldsymbol{e}}\right)$	-1
kit_ets_mblambertw $\left(-1, \frac{3 \cdot \pi}{2}\right)$	$\frac{-3 \cdot \pi}{2} \cdot \boldsymbol{i}$
kit_ets_mblambertw $(1,0)$	$-\infty$

$$
\left[\begin{array}{l}
\operatorname{lambertw}(0,0)=0 \\
\operatorname{lambertw}(0, e)=1 \\
\operatorname{lambertw}\left(0,-\frac{\pi}{2}\right)=\frac{\pi \cdot i}{2} \\
\operatorname{lambertw}\left(-1,-\frac{\pi}{2}\right)=-\frac{\pi \cdot i}{2} \\
\operatorname{lambertw}(1,-\pi \cdot \pi)=\pi \cdot i \\
\text { lambertw }\left(1, \frac{3 \cdot \pi}{2}\right)=\frac{3 \cdot \pi \cdot i}{2} \\
\text { lambertw }\left(-1,-\frac{1}{e}\right)=-1 \\
\text { lambertw }\left(0,-\frac{1}{e}\right)=-1 \\
\text { lambertw }\left(-1, \frac{3 \cdot \pi}{2}\right)=-1.5 \cdot \pi \cdot i \\
\text { lambertw }(1,0)=-\infty
\end{array}\right.
$$

P 10	Michel Beaudin: Exercises for Résumé 1	DNL 128

Precision := Approximate	
lambertw $1,3-2 \cdot i)=-0.1273564243+4.093282894 \cdot i$	
	lambertw $(1,3+2 \cdot i)=-0.3742879384+5.22893329 \cdot i$
	1ambertw $\left(0, \frac{i}{2}\right)=0.1625996482+0.3926285739 \cdot i$
	lambertw $(0,5 \cdot i)=-0.2233736303+6.24744614 \cdot i$
	1ambertw $(0,-5 \cdot i)=-0.2233736303-6.24744614 \cdot i$
	lambertw $(0,-1.5)=-0.03278373591+1.549643823 \cdot i$
	1ambertw(0, 1.5) $=0.7258613698$
	lambertw $(-1,-0.2)=-0.2591710984$
	lambertw $(-1,3 \cdot i)=11.70471152+0.3660158906 \cdot i$
	lambertw $(2,3 \cdot i)=-1.429822035+12.45204504 \cdot i$
	1ambertw $(-1,2-3 \cdot i)=-0.4462717121-5.615883357 \cdot i$
	lambertw $(-1,2+3 \cdot i)$
	Memory exhausted, but:
	lambertw $(2,2+3 \cdot i)=-1.197260107+11.87791011 \cdot i$
	lambertw $(-2,2+3 \cdot i)=-1.016359781-9.910584876 \cdot i$
	1ambertw $(-1,-2+i)=0.4238068940+1.400916834 \cdot i$

The real and some complex solutions of Problem 3c):

$$
\begin{aligned}
& \# 41:-\frac{4}{\operatorname{LOG}(3)} \cdot\left[\operatorname{tambertw}\left(0, \frac{\operatorname{LOG}(3)}{4}\right), \operatorname{lambertw}\left(0,-\frac{\operatorname{LOG}(3)}{4}\right), \operatorname{tambertw}\left(-1,-\frac{\operatorname{LOG}(3)}{4}\right)\right] \\
& \text { \#42: } \quad[-0.8022464315,1.516776412,7.174755827] \\
& \text { \#43: }-\frac{4}{L N(3)} \cdot \operatorname{lambertw}\left(0, \frac{i \cdot L N(3)}{4}\right)=-0.2318785967-0.9091964141 \cdot i \\
& \text { \#44: }-\frac{4}{L N(3)} \cdot \text { 1ambertw }\left(0,-\frac{i \cdot \operatorname{LN}(3)}{4}\right)=-0.2318785967+0.9091964141 \cdot i \\
& \text { \#45: }-\frac{4}{L N(3)} \cdot \operatorname{lambertw}\left(-1, \frac{i \cdot L N(3)}{4}\right)=11.57399382-21.04616178 \cdot i \\
& \text { \#46: }-\frac{4}{L N(3)} \cdot 1 \text { ambertw }\left(-1,-\frac{i \cdot \operatorname{LN}(3)}{4}\right)=11.57399382+21.04616178 \cdot i \\
& \text { \#47: }-\frac{4}{\operatorname{LN}(3)} \cdot \operatorname{1ambertw}\left(2, \frac{i \cdot L N(3)}{4}\right)=14.00201516-44.64712529 \cdot i \\
& \text { \#48: }-\frac{4}{L N(3)} \cdot 1 \operatorname{ambertw}\left(-2, \frac{i \cdot L N(3)}{4}\right)=12.98784050+32.94807188 \cdot i \\
& \operatorname{RE}\left((x+i \cdot y)^{4}\right)=\operatorname{RE}\left(3^{x+i \cdot y}\right) \\
& \operatorname{IM}\left((x+i \cdot y)^{4}\right)=\operatorname{IM}\left(3^{x+i \cdot y}\right)
\end{aligned}
$$

DNL 128	Michel Beaudin: Exercises for Résumé 1	p 11

These are the points of my solutions. For \#45 from above you get another complex number. I plotted it in light blue - and not surprisingly it is also an intersection point.

$$
\frac{-4}{\ln (3)} \cdot \text { kit_ets_mbVambertw }\left(-1, \frac{\boldsymbol{i} \cdot \ln (3)}{4}\right)
$$

$9.18461+8.42098 \cdot \boldsymbol{i}$

Finally, I added a slightly changed version of your program (in my DERIVE version) to overcome the problem with hanging up during calculation.

I add a third parameter which are trials for initial values for the Newton method. As you can see in the last line, I can discover your complex number, too. The initial values could be obtained from a graph.

$$
-\frac{4}{\mathrm{LN}(3)} \cdot \text { lambertw2 }\left(-1, \frac{i \cdot \mathrm{LN}(3)}{4},[-2,-2]\right)=9.184614960+8.420975690 \cdot i
$$

p 12	Michel Beaudin: Exercises for Résumé 1	DNL 128

From Michel to Josef

When Jeffrey, Corless, Gonnet, Knuth and Hare programmed LambertW, they have decided that the branch cut will "follow" what is happening with the Log function. So if you set the imaginary part to be 0 , you get the ranges of every branches "k" of LambertW. See the file Branches.

I also learn many interesting things talking and exchanging emails with you. We form a good team! Today I have sent an email to the guy in Warsaw for proposing the Education session next summer. The website should be online soon. If you think of sending a proposal, I will be happy to do the Latex for you. Take care and Happy Holidays to you and Noor,

See the attachment in order to know how I was able to produce figure 11 using Nspire. Because there is still no real 2D implicit plotting available --only for polynomial relation or curves given by $\mathrm{x}=\mathrm{g}(\mathrm{y})$. And neither equation of the real part nor the imaginary part can be solved for x or for y .

Can Santa bring a real 2D implicit plotter for Christmas? Derive has it since almost 30 years ! Is it because TI develops the handheld with the software and it won't be fast enough on the handheld? Take care,

$z \cdot e^{z} z_{z=x+i} \cdot y$	$(x \cdot \cos (y)-y \cdot \sin (y)) \cdot e^{x}+(x \cdot \sin (y)+y \cdot \cos (y)) \cdot e^{x} \cdot \boldsymbol{i}$
OIf we set the imaginary part to 0 , then we get this because e^{x} is never 0:	
zeros $(x \cdot \sin (y)+y \cdot \cos (y), x)$	$\left\{\frac{-y}{\tan (y)}\right\}$
\triangle ©So the curve $\mathrm{x}==\mathrm{y} * \cot (\mathrm{y})$ is plotted (in relation mode or in parametric mode).	

"Implicit Plot" wit TI-Nspire (Michel's trick):

Then plot the two relations: rell $(x, y)=t 1 \cdot t 2-x^{4}+6 x^{2} y^{2}-y^{4}=0$ and $\operatorname{rel} 2(x, y)=t 1 \cdot t 3-4 x\left(x^{2}-y^{2}\right) y=0$.
I tried another example: Compare the DERIVE implicit plot with the approximated Nspire's one:

$$
\begin{aligned}
& t 5:=x \cdot \operatorname{taylor}(\sin (2 \cdot x), x, 30) \\
& \frac{2 \cdot x^{2} \cdot\left(8 \cdot x^{28}-1624 \cdot x^{26}+285012 \cdot x^{24}-42751800 \cdot x^{22}+5408102700 \cdot x^{20}-567850783500 \cdot x^{18}+48551241989250 \cdot x^{16}-3301484455269000 \cdot x^{14}\right.}{t 6:=y \cdot \operatorname{taylor}(\cos (3 \cdot x), x, 30)}, \\
& \left(\begin{array}{l}
1-\frac{9 \cdot x^{2}}{2}+\frac{27 \cdot x^{4}}{8}-\frac{81 \cdot x^{6}}{80}+\frac{729 \cdot x^{8}}{4480}-\frac{729 \cdot x^{10}}{44800}+\frac{2187 \cdot x^{12}}{1971200}-\frac{19683 \cdot x^{14}}{358758400}+\frac{59049 \cdot x^{16}}{28700672000}-\frac{59049 \cdot x^{18}}{975822848000}+\frac{531441 \cdot x^{20}}{370812682240000}-\frac{1594323 \cdot x^{22}}{571051530649601}
\end{array}\right. \\
& t 7:=t 5-t 6-\left(x^{2}-y^{2}\right) \\
& \frac{x^{30} \cdot(68630377364883 \cdot y+5368709120)}{8841761993739701954543616000000}-\frac{x^{28} \cdot(22876792454961 \cdot y+3758096384)}{304888344611713860501504000000}+\frac{x^{26} \cdot(2541865828329 \cdot y+872415232)}{403291461126605635584000000}-\frac{x^{24} \cdot(94143178827 \cdot y}{2068161339110798}
\end{aligned},
$$

p 14	Michel Beaudin: Exercises for Résumé 1	DNL 128

Problems 4

Solving systems of nonlinear equations by the fixed-point method or by Newton's method
a) Find the real solutions of the following system by the fixed-point method (use implicit 2D- or 3D-graphs to obtain an initial point):

$$
\left\{\begin{array}{l}
x-1=\frac{1}{1+(x+y)^{4}} \\
y-3=\frac{1}{1+(x-y)^{4}}
\end{array}\right.
$$

b) Find the real solutions of the following system using Newton's method (use implicit 2D graphs to get an initial point):

$$
\left\{\begin{array}{c}
x^{3}+y^{3}=10 \\
x y^{2}-x^{2} y=2
\end{array}\right.
$$

Note that the latter system is polynomial and can be solved exactly. If you can, take a look at a Gröbner basis given by a symbolic system to see that a polynomial equation of degree 9 appears in y, but reducible to an equation of degree 3 . Since the Cardan formulas are known, one can understand why an exact solution is possible but not practical.
c) Find the real solutions of the following system using Newton's method:

$$
\left\{\begin{array}{l}
3 x y-2 x^{2}+4 \sin y+6=0 \\
3 x^{2}-2 x y^{2}+3 \cos x+4=0
\end{array}\right.
$$

d) Find the real solutions of the following system using Newton's method:

$$
\left\{\begin{array}{c}
x^{2}-x y+2 y-10=0 \\
x^{3} y^{2}-2=0
\end{array}\right.
$$

e) Find the real solutions of the following system using Newton's method:

$$
\left\{\begin{array}{l}
12+3 x+8 y+12 x y+9 x^{2}-12 y^{2}=0 \\
5+12 x+6 y-9 x y-2 x^{2}-11 y^{2}=0
\end{array}\right.
$$

f) Consider the following system of equations $\left\{\begin{array}{l}x^{2}+y^{2}=16 \\ x y=1\end{array}\right.$.
i) Give a simple argument to show that this system has 4 real solutions.
ii) Find a Gröbner base of this system.
iii) Show that if you have found a solution, then you have the other three ones, too.
iv) Find one of the four solutions, exactly. Reconfirm by Newton with two variables.
g) We are looking for a complex solution to the equation $x^{2}=2^{x}$. We then substitute x by $x+i y$ to obtain two equations with two unknowns (the real part, the imaginary part). Show that using Newton's method in two variables and choosing as starting point the couple $(3.1,10.4)$ we get the real solution $x=2$. Show that if the starting point is rather the couple $(7.1,12.4)$ then there we find indeed a complex solution.

DNL 128	Michel Beaudin: Exercises for Résumé 1	P 15

Problem 4a)

Find the real solutions of the following system by the fixed-point method (use implicit 2D or 3D graphs to get an initial point):

$$
\left\{\begin{array}{l}
x-1=\frac{1}{1+(x+y)^{4}} \\
y-3=\frac{1}{1+(x-y)^{4}}
\end{array}\right.
$$

To plot each of the two curves, an implicit 2D-plotter is required but fortunately (if you use Nspire), the equations are equivalent to polynomial equations and here are each of these two curves in the same window: an intersection point seems to be around $(1,3)$:

Figure 3
We will apply the fixed-point method without checking if the absolute value of the determinant of the Jacobian matrix of the vector field $\mathbf{F}: \mathbb{R} \quad \mathbb{R}$ defined by

$$
\mathbf{F}(x, y)=\left[1+\frac{1}{1+(x+y)^{4}}, 3+\frac{1}{1+(x-y)^{4}}\right]
$$

is less than one in a neighborhood of the point $(1,3)$, which is probably the case. The reader can verify that the Maple command "fsolve" finds the solution

$$
\{x=1.003676746, y=3.053595699\}
$$

In Nspire -- we decided to display more decimals in Figure 4 -- the fixed-point method confirms this answer:

P 16	Michel Beaudin: Exercises for Résumé 1	DNL 128

$f(x, y):=\left[\begin{array}{cc}1+\frac{1}{1+(x+y)^{4}} & 3+\frac{1}{1+(x-y)^{4}}\end{array}\right]$	Done
	$\left[\begin{array}{cc}1 & 3 . \\ 1.00389105058 & 3.05882352941 \\ 1.00365715658 & 3.05310224261 \\ 1.00367859905 & 3.55364262555 \\ 1.00367656943 & 3.05359123833 \\ 1.00367676235 & 3.05359612333 \\ 1.00367674401 & 3.05359565892 \\ 1.00367674575 & 3.05359570307 \\ 1.00367674558 & 3.05359569887 \\ 1.0036767456 & 3.05359569927 \\ 1.0036767456 & 3.05359569923 \\ 1.0036767456 & 3.05359569924 \\ 1.0036767456 & 3.05359569924 \\ 1.0036767456 & 3.05359569924 \\ 1.003676746 & 3.0535956924 \\ 1.0036767456 & 3.05359569924\end{array}\right]$
\square	

Figure 4
However, the reader can check that the Nspire "solve" command gives several answers, all to be rejected: this is probably due to the fact that the precision of the calculation is limited to 14 digits (even on the software version).

Remark: it is however easy to verify that the continuous vector field $\mathbf{F}(x, y)$ sends a rectangle into itself and that, on this rectangle, the absolute value of the determinant of its Jacobian matrix is indeed increased by a constant K strictly less than one. In fact, let's take the rectangle (square)
$R=\{(x, y) \in \mathbb{R} \quad \leq 2,3 \leq y \leq 4\}$. If we take a point (x, y) of this rectangle, then since $0<\frac{1}{1+(x \pm y)^{4}}<1$, it is clear that \mathbf{F} sends R into itself. By using a calculator to calculate the determinant of the Jacobian matrix of F and drawing the graph of the resulting scalar field, we can convince ourselves that the surface is well included between the two horizontal planes $z=0$ and $z=1$. Thus, whatever the starting point (a, b) chosen in R , we would have had convergence! In particular, starting from the "corner" of the rectangle at point $(2,4)$ we receive:

kit_ets_mb\fixed_points $\left(f(x, y),\left[\begin{array}{ll}x & y\end{array}\right],\left[\begin{array}{ll}2 & 4 .], 7)\end{array}\right.\right.$	$\left[\begin{array}{c} 2 \\ 1.00077 \\ 1.00367 \\ 1.00368 \\ 1.00368 \\ 1.00368 \\ 1.00368 \\ 1.00368 \end{array}\right.$	$\begin{gathered} 4 . \\ 3.05882 \\ 3.0528 \\ 3.05367 \\ 3.05359 \\ 3.0536 \\ 3.0536 \\ 3.0536 \end{gathered}$

Figure 5

One "fixed-point" calculation performed with DERIVE is given on the next page.

DNL 128	Michel Beaudin: Exercises for Résumé 1	p 17

FIXED_POINT $\left(\left[1+\frac{1}{1+(x+y)^{4}}, 3+\frac{1}{1+(x-y)^{4}}\right],[x, y],[2,4], 5\right)$
$\left[\begin{array}{cc}2 & 4 \\ 1.000771010 & 3.058823529 \\ 1.003668371 & 3.052797921 \\ 1.003679658 & 3.053673900 \\ 1.003676452 & 3.053588248 \\ 1.003676773 & 3.053596407\end{array}\right]$

Problem 4b)

Find the real solutions of the following system using Newton's method (use implicit 2D graphs to get a starting point):

$$
\left\{\begin{array}{c}
x^{3}+y^{3}=10 \\
x y^{2}-x^{2} y=2
\end{array}\right.
$$

Note that the latter system is polynomial and can be solved exactly. A Gröbner basis of this system is provided by the Derive software here. You can choose the lexicographical order (x, y) or (y, x) : line \#3 of figure 6 shows that the system is equivalent to another one whose first expression is a polynomial in " y " that can be reduced to degree 3 , thus solved symbolically by the Cardano formula. The same is true in line \#5 for the polynomial in " x ". That's why this system is symbolically solvable (but it's not very practical!)

```
syst : \(:\left[x^{3}+y^{3}-10, x \cdot y^{2}-x^{2} \cdot y-2\right]\)
GROEBNER_BASIS(syst, \([x, y])\)
    \(\left[y^{9}-18 \cdot y^{6}+80 \cdot y^{3}+4,10 \cdot x+y^{7}-16 \cdot y^{4}+58 \cdot y\right]\)
    GROEBNER_BASIS(syst, \([y, x]\) )
        \(\left[x^{9}-12 \cdot x^{6}+20 \cdot x^{3}-4,10 \cdot y-x^{7}+14 \cdot x^{4}-38 \cdot x\right]\)
```

Figure 6
Someone who wanted to solve the equation $x^{9}-12 x^{6}+20 x^{3}-4=0$ would be able to do so, since by posing the latter equation we transform it into $z^{3}-12 z^{2}+20 z-4=0$. And we know how to solve a third degree polynomial equation symbolically. The three values we would find for z would be real and positive and we would take the cube root of each of them to obtain the values of " x ". Each of these values would then be used to find the corresponding value of " y " since line $\# 5$ of Figure 6 then indicates that

$$
y=\frac{x^{7}-14 x^{4}+38 x}{10}
$$

Nevertheless, the answers obtained would be impractical ... and one would then have to approximate them in decimal form to use them. Newton's method with two variables will give us the same decimals!

p 18	Michel Beaudin: Exercises for Résumé 1	DNL 128

To use Newton's method with two variables, we will plot each of the two curves on the same axes in order to look for intersections. Graphical analysis and an intersection tool already find three solutions:

Figure 7
Let's confirm these three intersections using Newton's method with two variables. With a given starting point, a convergent numerical method can only find one solution at a time. Let's make a function that uses the "Newtons2" function from the kit_ets_mb.tns library and that depends on the starting point (a, b).

Figure 8
The convergence is very fast: only 4 iterations were sufficient to observe a convergence.

Next page shows how we can solve the equation with DERIVE. The last expression is pretty huge. You can see only a part of the exact real solutions.

DNL 128	Michel Beaudin: Exercises for Résumé 1	p 19

NEWTONS $\left.\left(L^{3}+y^{3}-10, x \cdot y^{2}-x^{2} \cdot y-2\right],[x, y],[0.6,2.1], 4\right)$
$\left[\begin{array}{cc}0.6 & 2.1 \\ 0.6143622722 & 2.138358937 \\ 0.6140641341 & 2.137676392 \\ 0.6140640207 & 2.137676171 \\ 0.6140640207 & 2.137676171\end{array}\right]$
SOLUTIONS $\left(\left[x^{3}+y^{3}=10, x \cdot y^{2}-x^{2} \cdot y=2\right],[x, y]\right)$
$\left[\begin{array}{cc}2.157979959 & -0.3670432295 \\ 0.6140640208 & 2.137676171 \\ 1.1979139 & 2.023147422 \\ -1.078989979+1.868865465 \cdot i & 0.1835216147-0.317868761 \cdot i \\ -1.078989979-1.868865465 \cdot i & 0.1835216147+0.317868761 \cdot i \\ -0.5989569504+1.037423869 \cdot i & -1.011573711+1.752097063 \cdot i \\ -0.5989569504-1.037423869 \cdot i & -1.011573711-1.752097063 \cdot i \\ -0.3070320104+0.5317950415 \cdot i & -1.068838085+1.851281869 \cdot i \\ -0.3070320104-0.5317950415 \cdot i & -1.068838085-1.851281869 \cdot i\end{array}\right]$

SOLUTIONS $\left[x^{3}+y^{3}=10, x \cdot y^{2}-x^{2} \cdot y=2\right],[x, y]$, Real)
$\left[\begin{array}{cc}2.157979959 & -0.3670432295 \\ 0.6140640208 & 2.137676171 \\ 1.1979139 & 2.023147422\end{array}\right]$

$$
2 \cdot 2^{1 / 3} \cdot 3^{5 / 6} \cdot\left(2 \cdot \sqrt{7} \cdot \cos \left(\frac{\operatorname{ATAN}\left(\frac{5 \cdot \sqrt{111}}{117}\right)}{3}\right)-3 \cdot \sqrt{3}\right)^{7 / 3}
$$

$$
16 \cdot 6^{1 / 3} \cdot\left(2 \cdot \sqrt{ } 7 \cdot \cos \left(\frac{\operatorname{ATAN}\left(\frac{5 \cdot \sqrt{ } 111}{117}\right)}{3}\right)-3 \cdot \sqrt{3}\right)^{4 / 3} 2
$$

45

$$
-\frac{2 \cdot 2^{1 / 3} \cdot 3^{5 / 6} \cdot\left(2 \cdot \sqrt{7} \cdot \operatorname{SIN}\left(\frac{\operatorname{ACOT}\left(-\frac{5 \cdot \sqrt{111}}{117}\right)}{3}\right)+3 \cdot \sqrt{3}\right)^{7 / 3}}{45}
$$

$$
\frac{16 \cdot 6^{1 / 3} \cdot\left(2 \cdot \sqrt{ } 7 \cdot \operatorname{sIN}\left(\frac{\operatorname{ACOT}\left(-\frac{5 \cdot \sqrt{111}}{117}\right)}{3}\right)+3 \cdot \sqrt{3}\right)^{4 / 3}}{15}-
$$

$$
\frac{2 \cdot 2^{1 / 3} \cdot 3^{5 / 6} \cdot\left(2 \cdot \sqrt{7} \cdot \cos \left(\frac{\operatorname{ATAN}\left(\frac{5 \cdot \sqrt{111}}{117}\right)}{3}+\frac{\pi}{3}\right)+3 \cdot \sqrt{3}\right)^{7 / 3}}{45}
$$

$$
\frac{16 \cdot 6^{1 / 3} \cdot\left(2 \cdot \sqrt{ } 7 \cdot \cos \left(\frac{\operatorname{ATAN}\left(\frac{5 \cdot \sqrt{ } 111}{117}\right)}{3}+\frac{\pi}{3}\right)+3 \cdot \sqrt{3}\right)^{4 / 3}}{15}
$$

$$
\left.-\frac{2^{1 / 3} \cdot 3^{5 / 6} \cdot\left(2 \cdot \sqrt{7} \cdot \cos \left(\frac{\operatorname{ATAN}\left(\frac{5 \cdot \sqrt{111}}{117}\right)}{3}\right)-3 \cdot \sqrt{3}\right)^{1 / 3}}{2}\right]
$$

p 20	DERIVE \& CAS-TI-User Forum	DNL 128

Development of DERVE - versions
I helped Dr Hepperle accomplishing his collection of the DOS versions of DERIVE. He used and still uses DERIVE on his HP-Portable, HP-150 oder HP-200LX Palmtop for demonstration purposes. He sent two time lists showing the development of the DERIVE versions:

Version History - Soft Warehouse Derive

Derive's Growth

There are a few questions and problems which appear regularly in my mail box. One of them is connected with every new release of WINDOWS. "What to do when reinstalling DERVE in an updated WINDOWS environment fails?" Marcelo from Argentina complained a long time. But fortunately we could find the final soIution in our DUG Community. Thanks to all of you who helped.

DERIVE and WINDOWS11

Marcelo from Argentina wrote:

Abstract

Dear Josef, I hope you are fine. I was unable to install Derive on Windows 11. Did anybody solve the problem? I had no problems with Windows XP and later with Windows 7. However, the setup does not work on Windows 11.

Best regards, Marcelo

As I don't work with WIN11, I asked in our community and I received many answers. Once more, thanks to all of you who sent answers and advice.

Lars Erup wrote:

I'm using Derive for Windows v 5.00 on Windows 11 . It seems to work fine; I'm not doing particularly sophisticated things but haven't noticed anything untoward.

Cheers
Lars

Danny Ross Lunsford wrote:

There is no WOW (Windows on Windows) capability on Windows 11 to run 16-bit applications at all. Your best bet is to run a virtual machine running an earlier 32-bit version of Windows (any from 2000 to 10 will do) under say Virtual Box and install Derive in that. Because Derive does not have sophisticated graphics capabilities, you will lose nothing from the VM's lesser video performance and you will not even notice that it is running in a VM after a while.

I have been running 32-bit Derive 6.10 on Windows 10 for a long time. Haven't tried Windows 11 but I think it would work the same way. Windows 11 still allows 32 -bit software. The same song and dance that enables winhlp 32 on Windows 10 should also work.

p 22	DERIVE \& CAS-TI-User Forum	DNL 128

George Cook wrote:

Hello Josef
My copy of Derive (version 6.10) installed on Windows 11 without any issues.
Although I have not used it a lot, it seems to operate normally.
These days, I spend most of my time working with Python.
I started my Python journey about 6 months ago and I am very excited about it.
This is my first experience with programming and there is much to learn.
I recommend learning Python, the payoff is well worth the effort.

One more mail from George (accompanied by a couple of attachments):

Hello Josef:
At one time I was a member of DUG and you now have my Email address, so please renew my membership.
Yes, I use use both N-Spire and Python on my PC as well as Derive.
I am using PyCharm (community edition) as my Python IDE.
I wish I had gotten interested in Python years ago, it is really an important skill to have for doing Mathematics.
By the way, I got an Email from Francisco asking if I could solve the Derive HELP problem in Windows 11.

My solution was to copy use my old computer (windows 7) and copy the HELP files back into Derive's text editor.

I copy and paste the HELP examples back into my new Derive document for guidance.

I have attached these files for you and hope that you find them useful.
Please let me know if this idea works for you.

George

George's files can be found in the folder Cook in MTH128.zip. George did a tremendous job, many thanks. See the first lines of one of his files (Derive Help.docx):

Utility File Functions

The following is an alphabetical list of the functions defined in the utility files in Math directory distributed with Derive (see the Utility File Library). These functions are automatically load on demand.

ADJOINT(A) adjoint of square matrix A
AI_SERIES (z, m) $m+1$ terms of series approximation for Airy function Ai (z)
ALMOST_LIN($r, b, p, q, x, y, x 0, y 0) \quad$ implicit solution of
$r(x, y) y^{\prime}+p(x) b(y)=q(x)$ if almost linear

There are two WORD and 15 DERIVE dfw-files in the folder.

See the beginning of his file Built-in Functions and Constants page2.dfw:

Expression Type Functions

The functions in this topic are primarily used when writing Derive function definitions to determine the data type of expressions. By convention, the function names includes a ? to emphasize that they are predicates that return a truth-value (i.e. true or false).

INTEGER?(u) simplifies to true if u is an integer; otherwise it simplifies to false. For example, 5, $0,-1$, and 3 are integers. Note that, the expressions $\operatorname{FLOOR}(x)$ and $\operatorname{SIGN}(x)$ are not integers, although their data type is integer. Use INTEGER-TYPE? to test for such expressions.

RATIONAL?(u) simplifies to true if u is rational number (including integers) ; otherwise it simplifies to false. For example, $2 / 3,-7 / 2,5$, and 0 are rational numbers.

EVEN?(u) simplifies to true if u is an even number (including fractions whose numerator or denominator is even) ; otherwise it simplifies to false. For example, $4,0,-6,2 / 3$, and $3 / 2$ are even numbers.

ODD? (u) simplifies to true if u is an odd number (including fractions whose numerator and denominator is odd); otherwise it simplifies to false. For example, 1, -7 , and $3 / 5$ are odd numbers.

NUMBER? (u) simplifies to true if u is a real or complex number; otherwise it simplifies to false. For example, $3,-2 / 3,2 \cdot \hat{1}$, and $3-5 \cdot \hat{1}$ are numbers. Note that, the expressions $\operatorname{SIN}(x)$ and $x^{\wedge} 2$ are not numbers, although their data type is number. Use REAL_TYPE? and NUMBER-TYPE? to test for such expressions.

VARIABLE?(u) simplifies to true if u is a variable; otherwise it simplifies to false. For example, x, a, and Real are variables.

STRING?(u) simplifies to true if u is a string variable; otherwise it simplifies to false. For example, "a=b" and "Derive" are string variables.

SUM?(u) simplifies to true if u is a sum; otherwise it simplifies to false. For example, $x+y$ and $x-y$ are sums.

PRODUCT?(u) simplifies to true if u is a product; otherwise it simplifies to false. For example, $x \cdot y$ and x / y are products.

One of Marcelo's next desperate mails:

It seems that Microsoft does no longer accept programs with the old help facilities. I could solve it on Windows 7 by means of Winhlp32 but this strategy does not work any longer on Windows 11. I could install Derive 6.10 but the help does not work. George sent me copied of the Derive files he took from Derive on Windows 7. It seems that Derive will not fully operate on Windows 11.
Regards,
Marcelo

p 24	DERIVE \& CAS-TI-User Forum	DNL 128

But finally, I received the ultimate answer from our DERIVE-WIN-expert Günter Schödl:
Dear Josef,
I have now received a new Win11 computer (Lenovo) for testing. I have on it

1. Derive 6.1 installed with right click as administrator
2. the winhlp32 with the install routine (file install) I have already provided for win10, also installed as administrator after right click.

Conclusion: Everything works, algebra, graphics 2D and 3D and the help file.
If you do not try to install as administrator, you will fail because of the write permissions in the Windows directory.

Regardless of your rights (it does not matter whether you are logged in as administrator), you must select "Run as administrator" after right-clicking on the file!

Happy Marcelo wrote:

Dear Josef,
Thank you very much, it works fine now. I had failed to install Winhlp32 properly. Even Derive 5 works nicely.
Merry Christmas and happy new year.
Marcelo

Customized (DOS)DERIVE Menu

Ross Barnes wrote:

Dear Josef, In DNL \#16 at the bottom of page 3 there was a query from Glyn D Williams about customizing the menu of Derive for DOS 3 with file "DERIVE.MEN". You replied on the top of page 4:
"DNL:I have sent Mr Williams the information he wants and I announce for the next DNL to publish the way to "tune" one's own menu."
I've reviewed DNL \#17-DNL \#25 but have been unable to find the information about customizing the menu of Derive for DOS. I also reviewed "dnl_index121.pdf" with no results.
Do you know where I can find information on menu customization for Derive for DOS $3 / 4$?
One more question: Is there a comprehensive bug list for Derive 6.1? Reading through your DNLs and the JISC MAIL Derive-News archive l've seen mention of various minor problems with 6.1 but l've never seen a comprehensive list.

I use Derive for DOS 4.11 on my PC DOS computer as I slowly work my way through Numerical Analysis Via Derive by Schonefeld.

With your generosity I've been using Derive 6.1 as I read through Bernhard Kutzler's "Introduction to Derive 6" and various DNL articles.

Thank you for all your work on the Derive Users Group and the newsletters.
Happy holidays and best wishes for the new year,
Ross.

Dear Ross,

DNL\#16 was very long ago - and you are right, I promised explaining how to customize the DERIVE menu. But unfortunately enough, I did not keep my promise.
When I read your mail I didn't remember DNL16 (from 1994 which is nearly 30 years ago!!) but as I am a collector of books, papers - and files I undertook a research among my many DERIVE versions and files.
And finally, I was lucky I found a version containing a DERIVE.MEN and a DERIVE.LAN file which both do not appear in all other versions.
I had to run a DOS-Box to make DERIVE 3.14 alive - and really, I had a GERMAN Menu - that was it.

I attach three files: DERIVE.MEN, DERIVE.LAN and DERIVE.HLP. I don't know if they work with DERIVE 4.11, too.

Try to include the *.MEN and the *.LAN in your DERIVE folder and then run DERIVE.
I believe that these files are not included in your DERIVE 4.11. If so, then rename them that you will not lose the original files. The HLP-file might be included, so please rename it e.g. as DERIVE.hpl.
The you will find a German version of the menu and parts of the other two files. You can load them into your editor (DOS-editor) and study its structure - and you can change as you like. I didn't change the structure but only translated into German.
So, much luck and I hope that this might help.
How far have you gone with Schonefeld's book so far? If I can provide any support, then feel free to ask.

Best regards and many thanks for bringing back my memories,

Ross answered:
Dear Josef,
thank you for the files! Your files loaded without any problems on my DfD 4.11 software. I have attached an English version of DERIVE.MEN (DRVENGL.MEN) identical (hopefully) to the original DfD 4.11 menus. Perhaps one day another English speaking Derive user will send you a query about the menus.
Without your German DERIVE.MEN it would have been IMPOSSIBLE for me to build this file. I haven't made any changes to the original menu ordering or text. I'll need more user experience with DfD before I do that.
So far I'm not having any trouble the Schonefeld book. I took a Numerical Methods course forty years ago and read occasional articles since then mostly regarding old HP Calculators. I want to use the book to get me in a "Derive" functional programming state of mind as well as refresh my memory of various numerical methods.
Thanks again for all your assistance.
Sincerely,
Ross
P.S. I almost forgot...did anyone every compile a bug list for Derive 6.10?

p 26	Tania Koller: Who Plays Video Games?
Who Plays Video Games?	

Tania Koller, St. Pölten, Austria ${ }^{[1]}$

To be successful in business, collection of information is indispensable. Statistics is concerned with how best to collect, analyze, and interpret data. The following tasks serve to deepen the knowledge from descriptive and inferential statistics. Knowledge of the most important probability distributions is required.

137 students between their ages 15 and 17 years were surveyed about their behavior toward video games. Since the abundance of data would otherwise have been difficult to manage, the TI-92 was used for analysis.

This took into account the fact that in practice statistical analyses are now in almost all cases carried out by computer. Commercial statistical program packages are available for performing the calculations and creating graphs. However, many of these tasks can also be handled well with the support of the Tl-92.

The simpler statistical procedures are always formulaic, so you could also do the evaluation by hand. However, in case of large amount of data in practice, no one would think of actually performing such calculations manually. The students know that, too. They find data analysis without technical support time-consuming, cumbersome and therefore boring, while they can be motivated to work with an appropriate calculator.

Some tasks, such as simulating random sampling using random numbers, would not have been possible at all without $\mathrm{TI}-92$ or an appropriate computer program.

The Questionnaire:

1. How much time did you spend playing video or computer games in the last week? hours
2. Do you like to play video and/or computer games?
\square Very much $\quad \square$ Reasonably $\quad \square$ Not really \square Not at all
\square I have never played \rightarrow goto Question 9
3. What types of games do you play? (Mark all that apply.)
\square Action (Doom, Street Fighter, ...)
\square Adventure (King's Quest, Myst, Return to Zork, Ultima, ...)
\square Simulation (Flight Simulator, Rebel Assault, ...)
\square Sport (NBA Jam, Ken Griffey's MLB, NHL'94, ...)
\square Strategy, Puzzle, ...
[1] With Tania's friendly permission I translated her German report and added the treatment of her data with TI-NspireCAS. Many thanks to my many years' colleague on the HAK St. Pölten, Lower Austria. All possible errors are in my responsibility

DNL 128	Tania Koller: Who Plays Video Games?	p 27

4. Why did you mark the games above? (Choose at most three of them.)
\square I like the graphics / the realism.
\square Relaxation / recreation / entertainment
\square It improves my hand eye coordination.
\square It is a challenge for my mind.
\square It is a great feeling to win a game.
\square I would play anything when I am bored.
\square Other reasons (Please indicate!): \qquad
5. Where do you usually play video/computer games?
\square Arcade
\square At home \square On a system/console (Sega, Nintendo,...)
\square On a computer (IBM, MAC, ...)
6. How often do you play?
Daily
Weekly
Monthly
Semiannually
Even rarer
7. Do you still find time to play when you have a lot to do (e.g. if there are many examinations)?
Yes (I can't let it go) No (school first)
8. Do you think that games are important educationally?
\square Yes, or all years spending with video games were wasted.
\square No, it had been better reading books.
9. What do you not like about video games? (at most three answers!)
\square It takes too much time.It is frustrating.
\square It is lonely.
\square There are too many rules to learn.
\square It is too expensive.
$\square \mathrm{It}$ is boring.
\square My friends don't play.It is senseless.
\square Other reasons (Please indicate) \qquad
10. Your Gender:Male Female
11. Your age: \qquad

p 28	Tania Koller: Who Plays Video Games?	DNL 128

12. Was there a computer at home when you attended lower secondary?
\square Yes
No
13. What do you think of mathematics?
\square I hate mathematics \square I like mathematics.
14. How many hours a week do you work for money? \qquad

15. Do you own a PC?	\square Yes	\square No
Is there a CD-Rom-drive?	\square Yes	\square No

16. Do you have an email account?
\square Yes No

Statistical analyses can be performed on the basis of a wide variety of variables. A listing of some of the dates of the first 19 students is given to the right.

This data sheet is stored as video on the TI-92 Plus (Figure 1).

On the one hand, there are the quantitative variables with continuous measurements, such as the amount of time spent playing video games in the last week (question 1), the age of live (question 11), the working hours (question 14). In principle, these data can be measured with any precision and the current variable value can be

Nr.	Zeit	Gerne	Arten von Spielen											Warum?			
1	12	2	0	0	0	1	0	0	1	0							
2	4	2	0	0	0	0	1	0	1	0							
3	7	1	0	1	0	0	1	0	1	0							
4	3	2	0	1	0	0	1	0	1	0							
5	0	3	0	0	1	0	1	1	0	0							
6	0	3	1	0	0	0	1	1	1	1							
7	0	3	1	0	0	0	1	1	1	0							
8	2	3	0	1	0	0	1	1	1	0							
9	3	2	0	0	0	0	1	0	1	1							
10	0	3	0	0	0	0	1	0	1	1							
11	0	3	0	0	0	0	1	0	0	0							
12	1	3	0	0	0	1	1	0	1	0							
13	0	2	1	1	0	0	0	1	0	0							
14	1	2	0	1	0	0	1	0	0	0							
15	1	2	0	0	0	0	1	0	0	0							
16	1	3	1	1	0	0	0	1	0	0							
17	3	2	1	0	0	0	0	0	0	0							
18	10	1	0	0	0	1	0	0	0	0							
19	0	3	0	0	0	0	1	0	1	0							

Figure 0 assigned to them

At the other hand there are qualitative variables, e.g. the gender (question 10), or the Classification in the types of games (question 3) or the frequency of playing (question 6). The assignment of numbers to such "categorical" variables is necessary at the latest when statistical analysis is to be performed using a computer.

Figure 1

All questions that required a yes/no response were assigned "1" for yes and "0" for no. Such an assignment is arbitrary and has no empirical meaning whatsoever. In this case, we speak of nominal scaled variables. In the special case here of only two categories, we speak of a dichotomous variable. Nominal scaled variables are very limited in their evaluation possibilities. Strictly speaking, they can only be subjected to a frequency count. The calculation of a mean value, for example, is meaningless.

Tania did her investigation in 2001. She agreed that I could reproduce her project with TI-Nspire of nowadays. The first problem appeared when I entered the data in a List \& Spreadsheet App because for entering all data it would need 36 columns and the TI-Nspire allows only 26 (from A - Z). That's not so bad, because there are some questions in the questionnaire with answers not treated statistically. So, I selected only questions $1,2,3,4,6,8,10$ and 11 together with their respective answers.

I label this figure as N-Figure 1 which corresponds with Figure 1 (TI-92).

N -Figure 1

The answers to question 2 (Do you like playing video games?) can be assigned numbers that reflect an order relation by clever coding:

Very much = 1 Reasonably = 2 Not really = 3 Not at all $=4 \quad$ I have never played $=5$
Such variables, where the code numbers used have an empirical meaning with respect to their order, are called ordinally scaled (ordinal variables).
This includes the variable of question 6.
Daily $=1 \quad$ Weekly $=2 \quad$ Monthly $=3 \quad$ Semiannually $=4 \quad$ Even rarer $=5$

Now let's start with to the first questions:
(1) Represent the age distribution of the students surveyed in a histogram. The histogram can be defined by F2 Plot Setup > F1 Define.
The students' age can be found in column c29.

Figure 2

Figure 3

With F2 9 ZoomData a plotting area is suggested in the x-direction, but not in the y-direction. Since the best drawing area does not always result here, it is more favorable to set the area with [window] not only in the y-direction, but also in the x-direction by yourself.

DNL 128	Tania Koller: Who Plays Video Games?	p 30

Figure 4

Figure 6

Figure 5

Figure 7
[F3] Trace and \bigcirc can be used to display the absolute frequencies of the individual age groups. You can see, for example, that the oldest student surveyed was 21 years old.

Figure 8
When setting the window coordinates, it should be noted that the xmin value has a special significance in this context. It indicates where the individual columns of the histogram begin. For example, in the following figure, $\mathbf{x m i n}$ has been changed from 14 to 13.5 .

Figure 9
I proceed with the TI-Nspire using my spreadsheet. The columns don't have numbers but labels. c29 corresponds with column age. Quick Graph shows immediately a bar chart providing appropriate boundaries in all directions.

But you can also mark column age and then insert a Data \& Statistics App to obtain a bar chart first which can be changed to a histogram. Width and Alignment can be adapted similar to the TI-92 procedure.

DNL 128

Tania Koller: Who Plays Video Games?
p 31

N -Figure 4

N -Figure 5 a

N -Figure 8

N -Figure 5

N -Figure 7

N -Figure 9
(2) Plot the absolute frequencies of last week's game durations in a histogram, and interpret the result. The game durations are given in column c1.

Figure 10

N -Figure 10

72 students of have not played at all in the last week, but there are also extreme outliers, namely one student each with 20 , with 28 and with 40 hours of play.
(3) Find the mean and median.

Explain the difference of these values in the concrete example.
The mean of n values x_{i} is the sum of all values divided by its number: $\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}$
The median medStat is the value above and below which half of the ordered measured values lie.

These values are obtained from the data sheet via F5 Calc > Calculation Type > OneVar. You can also recall these values later under [7] Stat.

Thus, students played an (arithmetic) mean of 2.3 hours in the last week, but the median is 0 hours.

This is not surprising, as we already know that out of 137 students surveyed, 72 had not played at all in the past week.

Figure 11

Figure 12

The large value of the arithmetic mean is caused by the few students playing extremely long. When outliers occur, the calculation of the arithmetic mean is usually not useful.

Inspecting the data, one finds that the student in row 126 , with 40 hours of play time, is the most extreme "outlier" in this data series.
In order to examine the effect this value, we copy column c1 into the still free column c36. This is done with F4 Header > $\mathrm{c} 36=\mathrm{c} 1$ ENTER.

Afterwards, c1 is removed by typing \square ENTER as well, so that the data in c36 can be changed.
(I do this because l'd like to avoid losing data when experimenting with the values. You can change the value of r126c1, too, and then after performing OneVar Stats again undo the change.)

Figure 13

Figure 14

DNL 128

Tania Koller: Who Plays Video Games?
p 33

Let's assume that student \#126 did not play one single hour last week, we must replace the corresponding value in r126c1 by 0 .

How does this change affect mean and median?

The mean is now 2.0 hours, so it has immediately decreased by 18 minutes.
The median remains unchanged, of course, since it cannot become less than zero. The median is completely insensitive to outlier values. It is also completely irrelevant how large the largest measured value is.

Figure 15

Figure 16

Remark. As we don't have a free column to copy c 1 as shown on the TI-92 we must overwrite the $2^{\text {nd }}$ and the $3^{\text {rd }}$ column for presenting the statistics result.

N-Figure 11

N -Figure 11b

N -Figure 11a

Next page shows the One-Variable Statistics on the TI-Nspire computer screen for both cases.

DNL 128	Tania Koller: Who Plays Video Games?	p 34

	me B	c	D ad...		A time B	c	D ad... \|
$=$		=OneVar('time, 1): Copy V		$=$		= OneVar('time, 1): CopyV	
1	12 Title	One-Variable Statistics	0	1	12 Title	One-Variable Statistics	0
2	$4 \overline{\mathrm{x}}$	2.29562	0	2	$4 \overline{\mathrm{x}}$	2.00365	0
3	$7 \Sigma x$	314.5	1	3	$7 \Sigma x$	274.5	1
4	$3 \Sigma x^{2}$	4291.25	1	4	$3 \Sigma x^{2}$	2691.25	1
5	0 sx : $=s_{\text {n-1 }} \mathrm{x}$	5.12296	0	5	0 sx : $=s_{\text {n-1 }} \mathrm{x}$	3.96793	0
6	$0 \sigma_{x}$: $=\sigma_{n \mathrm{n}}$	5.10423	0	6	$0 \sigma x:=\sigma_{n} x$	3.95342	0
7	0 n	137.	0	7	0 n	137.	0
8	$2 \mathrm{Min} X$	0.	1	8	$2 \mathrm{Min} \times$	0.	1
9	$3 \mathrm{Q}_{1} \mathrm{X}$	0.	0	9	3 Q ${ }^{\text {P }}$	0.	0
10	0 MedianX	0.	0	10	0 MedianX	0.	0
11	$0 \mathrm{Q}_{3} \mathrm{X}$	2.	0	11	$0 \mathrm{Q}_{3} \mathrm{X}$	2.	0
12	1 MaxX	40.	0	12	1 MaxX	28.	0
13	0 SSX : $=\Sigma(\mathrm{x}-\overline{\mathrm{x}})^{2}$	3569.28	1	13	0 SSX : $=\Sigma(x-\overline{\mathrm{x}})^{2}$	2141.25	1
	N	gure 12		N-Figure 16			

(4) Now it is of course also interesting how the gender of the students influences their playing time per week. For this purpose, the box diagrams for all students together and separately according to gender are to be shown.

In addition to the median, which divides an ordered list of measured values in such a way that 50% of the values lie above and 50% below the median (also called the second quartile), there are two other distinguished points: the first (lower) quartile and the third (upper) quartile. Below the first quartile and above the third quartile, 25% of the ordered measurements are located in each case.

The lower and upper quartiles as well as the median are entered in the box-plot diagram. The $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ quartiles divide the measurements into four parts with equal frequencies. The distance between $1^{\text {st }}$ and $3^{\text {rd }}$ quartile
 (box) covers 50% of the values and is a measure for the dispersion of the values. To the left and right of the box, one also applies so-called whiskers (whiskers of a cat).

Figure 17

Figure 18

Box-plot diagrams show in which areas the individual values occur and with which frequencies. The box-plot diagram can be defined again starting from the data sheet. But it is also possible from the [$\mathrm{Y}=]$-Editor

Figure 19
For the other two diagrams, a distinction must now be made according to gender. The gender is in column c28, namely "female" was assigned the number " 0 " and "male" was assigned the number "1". Therefore, when defining the new box diagram, "Yes" is entered for the question Use Freq and Categories? for Category enter c28, for Include Categories $\{0\}$ and $\{1\}$, respectively.

In order from top to bottom, the playing times of all students, female students and male students are given here.
With F3 Trace you can query the individual quartile values in sequence. The first two figures look atypical, because here the minimum value minX coincides with the first quartile q1 and the median med.

Figure 20

Figure 21

Figure 22

The third quartile for female students is the same size, one hour, as the first quartile for male students. The female students played a maximum of 7 hours in the last week, which corresponds to the 3rd quartile of the male students, i.e. a quarter of the male students played longer.

N-Figure 19

N-Figure 22

```
DNL 128
``` Tania Koller: Who Plays Video Games?
(5) Represent the answers to (2). (Do you like playing video and/or computer games?) as a histogram. Since this is an ordinally scaled variable, the responses are each assigned a specific code number that corresponds to the order of the responses.

Figure 23

N -Figure 23

The histogram is excellently suited for determining the frequencies of the individual answers, since the absolute frequencies can be read directly with F3 Trace. It is interesting that all students state that they have played video games at any time.
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Answers } & Code & absolute frequency & relative frequency \\
\hline Very much & 1 & 15 & \(11 \%\) \\
\hline Reasonably & 2 & 59 & \(43 \%\) \\
\hline Not really & 3 & 48 & \(35 \%\) \\
\hline Not at all & 4 & 15 & \(11 \%\) \\
\hline Never played & 5 & 0 & \(0 \%\) \\
\hline
\end{tabular}
(6) Which of the questions has an ordinal variable, too?

In question 6 (How often do you play?) you can also scale the answers according to their order.

Figure 24

N -Figure 24
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Answers } & Code & absolute frequency & relative frequency \\
\hline Daily & 1 & 15 & \(11 \%\) \\
\hline Weekly & 2 & 40 & \(29 \%\) \\
\hline Monthly & 3 & 43 & \(31 \%\) \\
\hline Semiannually & 4 & 23 & \(17 \%\) \\
\hline Even rarer & 5 & 16 & \(12 \%\) \\
\hline
\end{tabular}

Of course, it is useless to calculate the arithmetic mean in this example, but it is possible to obtain information from the median even for ordinally scaled variables under certain circumstances

Figure 25
(7) Inspecting the results of (5) and (6), the question arises as to the correlation of the variables. Are the \(11 \%\) of students who like to play the same 15 ones who play daily? Are the \(11 \%\) of students who don't like video games at all in the group of those who play less than 1 time per semester?

It is therefore a matter of analyzing the relationship between two variables of the type "the larger the one variable, the larger the other". This only works if the variables are at least ordinally scaled or dichotomous.
It is recommended to first create a scatter plot. In our example, the frequency of the games is plotted against the popularity of the games:

Figure 26

Figure 27

The diagram gives the impression of a linear relationship.
The strength of the correlation can be described by a measure called the correlation coefficient \(r\) (on the TI-92 corr). The strength of the correlation is determined by the magnitude of the correlation coefficient. The sign indicates whether the correlation is equal or opposite. The following classification is common
\begin{tabular}{|l|l|}
\hline Korrelationskoeffizient & Classification \\
\hline\(|r| \leq 0.2\) & very weak correlation \\
\hline \(0.2 \leq|r| \leq 0.5\) & weak correlation \\
\hline \(0.5 \leq|r| \leq 0.7\) & moderate correlation \\
\hline \(0.7 \leq|r| \leq 0.9\) & strong correlation \\
\hline \(0.9 \leq|r| \leq 1\) & very strong correlation \\
\hline
\end{tabular}

So, we perform a linear regression on the TI-92:
\begin{tabular}{|l|l|l|}
\hline DNL 128 & Tania Koller: Who Plays Video Games? & p 38 \\
\hline
\end{tabular}

Figure 28

Figure 30

Figure 29
The correlation coefficient is \(r=0.787\), which means that there is a high positive - correlation.

Here you can see the scatter diagram on the TI-Nspire handheld screen followed by the calculation of the linear regression:

N-Figure 27

N-Figure 28

I copied the respective columns to second Lists \& Spreadsheet App within the same problem in order to not overwrite columns in my original spreadsheet. The equation of the regression line is stored as \(\mathbf{f 1}(\mathbf{x})\) which then can be plotted in additon to the scatter diagram.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1.1 & 11.2 & 1.3 & & & &] \(\times\) \\
\hline & A atti... & B freq & & D & E & - \\
\hline \(=\) & & & & =LinRegI & & \\
\hline 2 & 2 & & 2 Re & m*x+b & & \\
\hline 3 & 1 & & 1 m & 0.560526 & & \\
\hline 4 & 2 & & 2 b & 0.839647 & & \\
\hline 5 & 3 & & \(3 \mathrm{r}^{2}\) & 0.619355 & & \\
\hline 6 & 3 & 4 & 4 r & 0.786991 & & - \\
\hline & \multicolumn{4}{|l|}{="Linear Regression (\(\mathrm{mx}+\mathrm{b}\))"} & & 1 \\
\hline
\end{tabular}

N -Figure 29

N -Figure 30

If you are not interested in the correlation but only want to receive the regression line you can immediately get it via Menu \(>\) Analyze \(>\) Regression \(>\) Show Linear \(m x+b\).
\begin{tabular}{|c|c|}
\hline E 1 Plot Tvde & deg \(\square^{\square} \times\) \\
\hline 1 Hide Linear (mx+b) & le Linear (mx+b) \\
\hline 2 Show Linear (\(\mathrm{a}+\mathrm{bx}\)) & d Movable Line \\
\hline 3 Show Median-Median & \begin{tabular}{l}
d Movable Line \\
ck Intercept at Zero
\end{tabular} \\
\hline 4 Show Quadratic & it Function \\
\hline 5 Show Cubic & ade Under Function \\
\hline 6 Show Quartic & gression \\
\hline 7 Show Power & gression \\
\hline 8 Show Exponential & siduals \\
\hline 9 Show Logarithmic & it Value \\
\hline A Show Sinusoidal & ow Normal PDF \\
\hline - & aph Trace \\
\hline
\end{tabular}

(8) With nominally scaled variables, a number is assigned to the categories to enable the use of the computer, but the assignment is purely arbitrary. Therefore, nominally scaled variables are severely limited in their ability to be analyzed. Actually, they can only be used for frequency counting. This includes, for example, the question about the types of games that are played (question 2). There were five types given and all applicable ones were to be marked, with each cross being assigned "1" and each missing cross "0".

Figure 31

N -Figure 31
\begin{tabular}{|c|c|c|c|c|}
\hline Action & Adventure & Simulation & Sport & Strategy \\
\hline \(25,5 \%\) & \(32,8 \%\) & \(15,3 \%\) & \(24,8 \%\) & \(68,6 \%\) \\
\hline
\end{tabular}

Now, it is also interesting to know whether this question was answered by all respondents, or whether there are also students who ticked more than one type of game. Since the answers were stored in the columns c3, c4, c5, c6 and c7, only the numbers of these columns have to be added. If the sum is 0 , no game was ticked, if it is 1 , one game was ticked, and so on.

Therefore, the sum of \(\mathbf{c 3}, \mathbf{c 4}, \mathbf{c 5}, \mathbf{c 6}\) and \(\mathbf{c 7}\) is calculated in column \(\mathbf{c 3 6}\). To be able to order the values of the column also according to their size, the column c36 is also entered into the column c37.
\begin{tabular}{|l|l|l|}
\hline DNL 128 & Tania Koller: Who Plays Video Games? & p 40 \\
\hline
\end{tabular}

Figure 32

Figure 33

To change the column, you have to delete c36 in the header, the content of the column remains unchanged. By selecting [F6 Util 3: SortColumn the content of the column is now sorted by size.

Figure 34
With this, we can see (count) that 16 students did not mark any type, 46 marked one type, 48 marked two types, 23 marked three types, 2 marked four types, and 2 marked all five types of video games.

Figure 35

Figure 36

On the TI-Nspire I copy the columns of the game types into my second spreadsheet app (cols E - I) and add the values in the rows in column (kinds). After producing the histogram (or dot plot) I can trace the numbers of the students.

N -Figure 34

N -Figure 36

It is not surprising that 16 students did not tick any type of game, since 16 students also stated that they play less than once per semester. Of course, you can't be sure if you haven't checked it. You could now look in the questionnaires or in the table to see if this is true. Or you could check how often the students play who did not specify a type:

Figure 37

Figure 38

The plot of the categories on the TI-Nspire looks quite different, because it is not able to select only one category (0) - at least I was not able to do it. We find all categories collected in one graph and we have to select the requested one:

N -Figure 37

N -Figure 38

It turns out that our conjecture is indeed the reason.
(9) The question why video games are played was answered as follows:
\begin{tabular}{|l|l|}
\hline I like the graphics / the realism. & \(34,3 \%\) \\
\hline Relaxation / recreation / entertainment & \(47,4 \%\) \\
\hline It improves my hand eye coordination. & \(21,9 \%\) \\
\hline It is a challenge for my mind. & \(38,7 \%\) \\
\hline It is a great feeling to win a game. & \(39,4 \%\) \\
\hline I would play anything when I am bored. & \(29,9 \%\) \\
\hline Other reasons & \(3,6 \%\) \\
\hline
\end{tabular}
(10) What do you not like about video games? The answers were:
\begin{tabular}{|l|l|}
\hline It takes too much time. & \(46,7 \%\) \\
\hline It is frustrating. & \(13,1 \%\) \\
\hline It is lonely. & \(30,7 \%\) \\
\hline There are too many rules to learn. & \(8,0 \%\) \\
\hline It is too expensive. & \(50,3 \%\) \\
\hline It is boring. & \(19,7 \%\) \\
\hline My frnds don't play. & \(7,3 \%\) \\
\hline It is senseless. & \(19,0 \%\) \\
\hline Other reasons & \(4,4 \%\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline DNL 128 & Tania Koller: Who Plays Video Games? & p 42 \\
\hline
\end{tabular}
(11) How many of the students are female?

48 of \(N=137\) students are male, i.e. \(35 \%\), so \(M=89\) are female, which is \(65 \%\).

Figure 39

We will use our material to do some probability theory:

From \(N=137\) students, \(n=40\) are to be selected.
When selecting the 40 students, it is a "sampling without replacement". So, it is a hypergeometric distribution. We "expect" to be 26 female students in a sample, i.e. \(65 \%\). What is the probability that in a sample of \(n=40\) students exactly \(k=26\) (\(65 \%\)) are female? Applying hypergeometric distribution, the probability is 15.6 \%.

If the population is relatively large and the sample relatively small, the hypergeometric distribution may be approximated by the binomial distribution. Then the probability is 13.1 \%.

As a consequence of the central limit theorem, the binomial distribution and the hypergeometric distribution differ very little from a normal distribution if the sample size \(n\) and, in the case of the hypergeometric distribution, the ratio \(N / n\) are large enough.
\begin{tabular}{|c|c|}
\hline 41.1 1.2 1.3 > *video & DEG \(\square\) \\
\hline \multicolumn{2}{|l|}{© hypergeometric} \\
\hline \(\underline{\mathrm{nCr}}(89,26) \cdot \mathrm{nCr}(48,14)\) & 0.155909 \\
\hline - \(\mathrm{nCr}(137,40)\) & \\
\hline \multicolumn{2}{|l|}{(c) binomial} \\
\hline \(n \mathrm{Cr}(40,26) \cdot\left(\frac{89 .}{137}\right)^{26} \cdot\left(\frac{48}{137}\right)^{14}\) & 0.131314 \\
\hline
\end{tabular}

N-Figure 40

Figure 40

The following rule of thumb is often used: If the random variable \(X\) is
- binomial distributed with parameters \(n\) and \(p\) and if \(\sigma^{2}=n \cdot p \cdot(1-p) \geq 9\)
- or hypergeometrical distributed with parameters \(N, M, n\) and if \(\sigma^{2}=n \cdot \frac{M}{N} \cdot\left(1-\frac{M}{N}\right) \cdot \frac{N-n}{N-1} \geq 9\) and \(N \geq 2 n\), then with \(\mu=n \cdot p\) respectively \(\mu=n \cdot \frac{M}{N}\) and \(a<b\) applies: \(P(a \leq X \leq b)=\Phi\left(\frac{b+0.5-\mu}{\sigma}\right)-\Phi\left(\frac{b-0.5-\mu}{\sigma}\right)\).

In our example is \(\sigma^{2}=n \cdot p \cdot(1-p)=40 \cdot 0.65 \cdot 0.35=9.1 \geq 9\)
but \(\sigma^{2}=n \cdot \frac{M}{N} \cdot\left(1-\frac{M}{N}\right) \cdot \frac{N-n}{N-1}=40 \cdot \frac{89}{137} \cdot\left(1-\frac{89}{137}\right) \cdot \frac{137-40}{136}=6.5 \leq 9\) and \(137>80\)
i.e. in our case the binomial distribution is not a good approximation for the hypergeometric distribution. Using the normal distribution, you get \(13.16 \%\), which is a good approximation for the binomial distribution. We accept the poor fit to the approximation for the hypergeometric distribution in the further treatment of this example.

We are looking for a \(95 \%\) estimation interval for the absolute or relative proportion of female students in this sample. This is the range in which the absolute or relative frequency of girls lies with a probability of \(95 \%\).
The approximation equation \(P\left(\left|h_{n}-p\right| \leq \frac{z \cdot \sigma}{n}\right) \approx 2 \Phi(z)-1\) applies.
Now \(2 \Phi(z)-1=0.95\), so \(z=1.96\).
\(\sigma^{2}=n \cdot p \cdot(1-p)=40 \cdot \frac{89}{137} \cdot \frac{48}{137}=9.1\)
\(\frac{z \cdot \sigma}{n}=\frac{z}{n} \sqrt{n \cdot p \cdot(1-p)}=z \sqrt{\frac{p \cdot(1-p)}{n}} \approx 0.148\)
The \(95 \%\) estimation interval is \([0,502 ; 0,798]\) and \([20,32]\) for the absolute frequencies.
(12) The percentage of female students should be determined. We simulate samples of 40 people from our population in the data sheet video with a TI-92 program and examine the proportion of girls in them. For this purpose, we write a small program:

Figure 42

Via APPS 7:ProgrammEditor > 3:New we open a new program named pro1.
\(g\) is the size of the population; \(n\) is the size of the sample. With \(\mathbf{s e q}(\mathbf{0}, \mathbf{x}, \mathbf{1}, \mathbf{g})\) we create a list of length \(g\) with all zeros and store it under the name livid. rand \((\mathbf{g})\) generates a random number from 1 to \(g\). This command is used to randomly select one person from the population.

Figure 43

The value with the place number determined with rand \(\mathbf{(g)}\) is assigned the number " 1 " in the list livid. This is done with \(1 \rightarrow \mathrm{livid}[\mathbf{r a n d}(\mathrm{g})]\). This is repeated until the desired sample size is reached. livid then has exactly \(n\) ones and the rest is all zeros. The persons who receive "1" are selected.

\section*{DNL 128} Tania Koller: Who Plays Video Games? p 44

For testing pro1(8,5) gives a list of 8 elements with 5 ones, \(\mathbf{p r o 1}(\mathbf{2 0}, \mathbf{1 0})\) gives a list of 20 elements with 10 ones, etc. randseed number initiates the random number generator. F5 PrgmiO switches to the Program I/O screen and presents the latest results for the lists (named livid in pro1).
livid in the [HOME]-screen calls the last program output.

Figure 44

Figure 45

This list is stored in the table video in an empty column (here in c35).

Figure 46
Column c28 indicates the sex of the individuals in the population, and "1" stands for male and " 0 " for female.
Column c36 is c28-c35. So, only rows with male students are indicated by a " 1 ". Then the sum of this column gives the number of the male students in the sample and all others are female ones.

However, it is not necessary to call up the data sheet for this purpose; the program can also be extended accordingly.
Enter pro2 \((137,40)\) in the Home screen and find the result in the Program I//O screen.

Figure 47

Figure 48

Figure 49

I skip presenting pro1 and its application on the TI-Nspire. prol is included in video.tns and you can perform the procedure using the second spreadsheet. You can ask your students to perform 50 runs of pro1 or pro2 and collect the data in a table. Don't forget to use various randseed numbers.

DNL 128 Tania Koller: Who Plays Video Games?

N-Figure 49
The following table shows the absolute and relative frequencies for 50 samples.
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline abs. fr. & 26 & 25 & 24 & 28 & 25 & 24 & 29 & 27 & 24 & 23 \\
\hline rel. fr. & 0.650 & 0.625 & 0.600 & 0.700 & 0.625 & 0.6 & 0.725 & 0.675 & 0.600 & 0.575 \\
\hline abs. fr. & 24 & 28 & 27 & 24 & 25 & 29 & 28 & 28 & 27 & 26 \\
\hline rel.f r. & 0.600 & 0.700 & 0.675 & 0.600 & 0.625 & 0.725 & 0.700 & 0.700 & 0.675 & 0.650 \\
\hline abs. fr. & 29 & 26 & 28 & 26 & 24 & 26 & 24 & 30 & 26 & 28 \\
\hline rel. fr. & 0.725 & 0.650 & 0.700 & 0.65 & 0.600 & 0.650 & 0.600 & 0.750 & 0.650 & 0.700 \\
\hline abs. fr. & 26 & 23 & 25 & 25 & 23 & 25 & 29 & 25 & 24 & 28 \\
\hline rel. fr. & 0.650 & 0.575 & 0.625 & 0.625 & 0.575 & 0.625 & 0.725 & 0.625 & 0.600 & 0.700 \\
\hline abs. fr. & 23 & 22 & 26 & 23 & 23 & 26 & 25 & 24 & 25 & 22 \\
\hline rel. fr. & 0.575 & 0.550 & 0.650 & 0.575 & 0.575 & 0.650 & 0.625 & 0.600 & 0.625 & 0.550 \\
\hline
\end{tabular}

The absolute frequencies of the girls range from 22 to 30 , with a mean of 25.6 .

The frequencies are displayed in a histogram and the corresponding normal distribution curve is plotted.

Figure 50

Figure 51
\begin{tabular}{|l|l|l|}
\hline DNL 128 & Tania Koller: Who Plays Video Games? & p 46 \\
\hline
\end{tabular}

N -Figures 51
(13) Using a Tl92 program pro3(g,n) - similar to pro2(ng) from (12) -, random samples with increasing sample size were drawn. The results are entered in the table.
\begin{tabular}{|c|c|}
\hline Sample size & \begin{tabular}{l}
Relative freq. of girls \\
in the sample
\end{tabular} \\
\hline 5 & 0,600 \\
\hline 6 & 0,667 \\
\hline 7 & 0,714 \\
\hline 8 & 0,750 \\
\hline 9 & 0,778 \\
\hline 10 & 0,700 \\
\hline 20 & 0,650 \\
\hline 30 & 0,633 \\
\hline 40 & 0,800 \\
\hline 50 & 0,680 \\
\hline 60 & 0,667 \\
\hline 70 & 0,600 \\
\hline 80 & 0,638 \\
\hline 90 & 0,667 \\
\hline 100 & 0,640 \\
\hline 110 & 0,672 \\
\hline 120 & 0,675 \\
\hline 130 & 0,646 \\
\hline
\end{tabular}

Figure 52

Figure 53

As known, 89 of the 137 students are female, i.e. \(p=0.650\).
Of course, the results in the table are purely random. if the experiment is repeated the table will look completely different.

As the sample size increases, the proportion of girls in the population (65\%) is better and better approximated, but these approximations depend on chance. We now want to know how much we can trust a certain sample with a certain sample size and how large we should reasonably choose the sample size.
(14) Let's assume that you know only 50 students who participated in this survey. Of these, 34 are female, or \(68 \%\). Thus, you would estimate that the percentage of girls in the total student respondents (all 137) is also \(68 \%\). We now want to find out how reliable such an estimate is. This is a typical problem where a sample is to be inferred to the entirety. One can specify an interval within which the actual girl percentage \(p\) will lie with probability \(\gamma\). We determine such a \(\gamma\)-confidence interval for \(\gamma=95 \%\) confidence level (= safety), or for a \(99 \%\) confidence level.

In (11) we calculated a \(\gamma\)-estimation interval for \(h_{n}\) for a given \(P\) :
\(P\left(\left|h_{n}-p\right| \leq \frac{z \cdot \sigma}{n}\right) \approx 2 \Phi(z)-1=\gamma\).
Now we substitute for \(\sigma=\sqrt{n \cdot p \cdot(1-p)}\) and receive for any given \(p\) the \(\gamma\)-estimate for \(h_{n}:\left|h_{n}-p\right| \leq z \cdot \sqrt{\frac{p \cdot(1-p)}{n}}\).
I.e. with a certainty of \(\gamma\) is \(h_{n} \in\left[p-z \cdot \sqrt{\frac{p \cdot(1-p)}{n}}, p+z \cdot \sqrt{\frac{p \cdot(1-p)}{n}}\right]\). To solve this problem, we need to find those values for \(p\) for which \(h_{25}=0.68\) lies in this interval.
Therefore, the problem is reduced to solving the inequality \(\left|h_{n}-p\right| \leq z \cdot \sqrt{\frac{p \cdot(1-p)}{n}}\), with unknown \(p\).
We calculate \(z=1.96\) from \(2 \Phi(z)-1=\gamma=0.95\). Sample size is \(n=50\).
\[
\begin{aligned}
& |0.68-p| \leq 1.96 \cdot \sqrt{\frac{p \cdot(1-p)}{50}} \\
& (0.68-p)^{2} \leq 1.96^{2} \cdot \frac{p \cdot(1-p)}{50}
\end{aligned}
\]

Thus, with a confidence level of \(95 \%\) is \(p\) in the
\[
\text { solve }\left((0.68-p)^{2}=\frac{(1.96)^{2} \cdot p \cdot(1-p)}{50}, p\right)
\]

\[
p=0.541894 \text { or } p=0.79242
\] interval [0,541; 0,793]. With 95\% certainty, the percentage of girls in the population may be predicted to be between \(54.1 \%\) and \(79.2 \%\).
If we calculate on the \(99 \%\) certainty level, i.e. \(2 \Phi(z)-1=0,99\) and thus \(z \approx 2.58\), we can predict with \(99 \%\) certainty that the percentage of girls in the basic population is between 49.7\% and 82.1\%.

The greater the statistical certainty, the less precise the statement about the probability, i.e. the wider the confidence interval.

The confidence interval is often also calculated with an approximation method: since one can assume with a sufficiently large sample size that \(p\) will be approximately \(h_{n}\) one replaces \(p\) by \(h_{n}\) on the right side of \(\left|h_{n}-p\right| \leq z \cdot \sqrt{\frac{p \cdot(1-p)}{n}}\).
\(\left|h_{n}-p\right| \leq z \cdot \sqrt{\frac{h_{n} \cdot\left(1-h_{n}\right)}{n}}\)
\(|0.68-p| \leq 1.96 \cdot \sqrt{\frac{0.68 \cdot 0.32}{50}} \approx 0.13\)
This means that \(p\) would lie in the interval \([0.55 ; 0.81]\) with \(95 \%\) confidence. This approximation provides good results for large \(n\) and \(p \approx 0,5\) only. A rule of thumb for their applicability is \(0.3<p<0.7\). Therefore, the approximation in our particular example is not so good.
(15) Let's now calculate the \(95 \%\) confidence intervals for different sample sizes from (13).

Figure 54

N-Figure 54

Figure 55

N -Figure 55

Use the TI92 to calculate the zeros of the function \((h-p)^{2}-\frac{1.96^{2} \cdot p \cdot(1-p)}{n}\) (as a function of \(p\)) and then save the resulting bounds of the confidence interval in a list as \(\operatorname{konf}(n, h)\).
In our case, it is even more practical to receive the results in a data sheet. To do this, save the list of results of the general calculation as kon. Then kon[1] specifies the first number of the list and kon[2] the second one.
In the data sheet, the sample sizes should appear in the first column and the relative frequencies in the second column. By entering c3 = con[1]|n=c1 and h=c2 and \(\mathbf{c 4}=\operatorname{con}[2] \mid \mathbf{n}=\mathbf{c 1}\) and \(\mathbf{h}=\mathbf{c 2}\), we obtain the bounds of the confidence intervals in the corresponding columns.

Figure 56

N -Figure 56

Figure 57

N -Figure 57

In the TI-Nspire enter the expressions for the bounds in cells \(p l\) and \(q 1\), respectively and then copy the cells down (see N-Figure 57).
\begin{tabular}{|l|l|ll|}
\hline Sample size & \begin{tabular}{l}
relative frequency of \\
girls in the sample
\end{tabular} & \begin{tabular}{l}
\(|l|\) \\
for -confidence interval \\
the population
\end{tabular} \\
\hline 5 & 0.600 & 0.321 & 0.882 \\
\hline 6 & 0.667 & 0.300 & 0.903 \\
\hline 7 & 0.714 & 0.359 & 0.918 \\
\hline 8 & 0.750 & 0.409 & 0.929 \\
\hline 9 & 0.778 & 0.453 & 0.937 \\
\hline 10 & 0.700 & 0.397 & 0.892 \\
\hline 20 & 0.650 & 0.433 & 0.819 \\
\hline 30 & 0.633 & 0.455 & 0.781 \\
\hline 40 & 0.800 & 0.652 & 0.895 \\
\hline 50 & 0.680 & 0.542 & 0.792 \\
\hline 60 & 0.667 & 0.541 & 0.773 \\
\hline 70 & 0.600 & 0.483 & 0.707 \\
\hline 80 & 0.638 & 0.529 & 0.735 \\
\hline 90 & 0.667 & 0.565 & 0.756 \\
\hline 100 & 0.640 & 0.542 & 0.727 \\
\hline 110 & 0.672 & 0.580 & 0.753 \\
\hline 120 & 0.658 & 0.587 & 0.752 \\
\hline 130 & 0.646 & 0.561 & 0.723 \\
\hline
\end{tabular}

If we plot the upper and lower bounds of the \(95 \%\) confidence intervals as a function of sample size, we see that the confidence intervals become smaller and smaller with increasing sample size, but also depend on the size of the frequency.
In addition, the (usually unknown) proportion \(p\) of girls in the population is plotted.
In figure 58, the 99\% confidence interval has also been plotted. (We use list kon99, which is obtained by replacing 1.96 by 2.58 in list kon from above.)

Figure 57

N-Figure 57

Figure 58

N -Figure 58
(16) Based on a preliminary investigation it is known that there are about \(70 \%\) girls in the school. A new survey shall re-estimate this percentage, with \(95 \%\) confidence. The prescribed length of the confidence interval should have the specified length of 0.2 , i.e. \(p\) is determined with an estimate with a maximum deviation of \(\pm 10 \%\).
Half-length of the confidence interval is approximately given by \(\varepsilon=z \cdot \sqrt{\frac{h \cdot(1-h)}{n}}\). From this follows that \(n=\frac{z^{2} h \cdot(1-h)}{\varepsilon^{2}}=\frac{1.96^{2} \cdot 0.7 \cdot 0.3}{0.1^{2}} \approx 81\). This means that 81 persons must be interviewed in order to estimate the proportion of girls with \(95 \%\) probability with a maximum deviation of.\(\pm 10 \%\). If we wanted to increase the accuracy to \(\pm 5 \%\), then 323 samples would be necessary. In our example, this is already more than the population.

Likewise, the confidence interval changes when \(h\) is changed. If no value for \(h\) is known at all, one must assume the least favorable value.

How does the sample size depend on \(h\) ?
If the formula is stored as a function of the sample size, a parabola with a maximum at \(50 \%\) is obtained (zeros are 0 and 1 !). This means that in the worst case, the sample size would be at maximum deviation with \(95 \%\) probability \(\frac{1.96^{2} \cdot 0,5^{2}}{0,1^{2}} \approx 97\).
(17) How many people need to be surveyed in a large-scale survey to determine their preferences for certain types of computer games if the survey is to be accurate with \(99 \%\) confidence and
a) no data are known,
b) the results of (8) are known?

\begin{tabular}{|l|l|l|l|l|l|}
\hline \begin{tabular}{l}
No data \\
are known
\end{tabular} & Action & Adventure & Simulation & Sport & Strategy \\
\hline \(50 \%\) & \(25.5 \%\) & \(32.8 \%\) & \(15.3 \%\) & \(24.8 \%\) & \(68.6 \%\) \\
\hline 16641 & 12645 & 14672 & 8626 & 12414 & 14338 \\
\hline
\end{tabular}

\section*{References:}
[1.] Nolan Deborah, Speed Terry: Stat Labs, Mathematical Statistics Through Applications, Springer, ISBN 0-387-98974-9
[2.] Böhm Josef, Importing Data to Derive and the TIs in The Derive-Newsletter \#41
[3.] Zöfel Peter: Statistik verstehen, Ein Begleitbuch zur Computerunterstützten Anwendung, Addison-Wesely Verlag, 2001, ISBN 3-8273-1690-1
[4.] Brannath Werner, Futschik Andreas: Statistik im Studium der Wirtschaftswissenschaften, WUV Studienbücher Wirtschaftswissenschaften Band 3, ISBN 3-85114-473-2
[5.] Bortz Jürgen: Statistik für Sozialwissenschaftler, Springer, ISBN 3-540-65088-1
[6.] Graybill,Franklin A.: Applied statistics: a first course in inference, Prentice Hall, ISBN 0-13-621467-3
[7.] Johnson Robert: Elementary statistics, Duxbury, ISBN 0-534-35676-1
[8.] Devore Jay L.: Probability and Statistics for Engineering and the Sciences, Duxbury, ISBN 0-534-37281-3
[9.] Chatfield Chris: Problem solving, A statistician's guide, CHapman\&Hall/CRC, ISBN 0-412-60630-5
[10] Kammen Daniel M.: Should we risk it? exploring environmental, health, and technological problem solving, Princeton University Press, ISBN 0-691-0 7457-7
[11.] Keller Gerald: Statistics for Management and Economics, Duxbury, ISBN 0-534-36830-1
[12.] Kazmier Leonard J.: Wirtschaftsstatistik, Schaum's, McGraw-Hill, ISBN 3-98028-950-9
[13.] Spiegel Murray R.: Statistik, Schaum's, McGraw-Hill, ISBN 3-89028-948-7
[14.] Timischl Werner: Biostatistik, Eine Einführung für Biologen und Mediziner, Springer ISBN 3-211-83317-X
[15.] Phillips John L.: Statistisch gesehen, Birkhäuser, ISBN 3-7643-2912-2
[16.] Mühlbach G.: Repetitorium der Wahrscheinlichkeitsrechnung und Statistik, Binomi Verlag, ISBN 3-923 923-31-7
[17.] Bosch Karl: Elementare Einführung in die Wahrscheinlichkeitsrechnung, vieweg, ISBN 3-528-47225-1
[18.] Bosch Karl: Elementare Einführung in die angewandte Statistik, vieweg, ISBN 3-528-37227-3
[19.] Bosch Karl: Aufgaben und Lösungen zur angewandten Statistik, ISBN 3-528-17257-6
[20.] Sachs Lothar: Angewandte Statistik, Springer, ISBN 3-540-06443-5
[21.] Reichel Hans Christian(Hrsg), Wahrscheinlichkeitsrechnung und Statistik, Mathematik für Schule und Praxis, HPT, ISBN 3-209-00736-5

\title{
On the Trace of the Spider
}

\author{
Josef Böhm, Austria
}

It was in November when I browsed through the nice and inspiring puzzles provided by Heinrich Hemme (https://www.spektrum.de/raetsel/). There was one (from 28 July 2021): "How long is the shortest way?" BTW, it was Wolfgang Alvermann who drew my attention to these puzzles some time ago.
This is a problem which can be found originally in a book written by the famous Polish mathematician Hugo Steinhaus (1887-1972) in his book "Kalejdoskop Matematyczny", which was translated into many languages (e.g. German: "Kaleidoskop der Mathematik", English: "Mathematical Snapshots").

This is the problem:
At the half of the slant height of a circular cone with base diameter 10 and slant height 20 sits a spider. It crawls around the cone once and gets back to its starting point. Its distance from the tip of the cone does not necessarily always remain the same. By chance it has taken the shortest possible path. How long is this path?
(https://www.spektrum.de/raetsel/wie-lang-ist-der-kuerzeste-weg/1896961).

The solution is very easy and does not require any tool. Do you find the length of the path?
I had the idea to produce a 3D-model of the cone together with the path of the spider applying sliders for changing the dimensions of the cone. (You find a picture of my paper model on page 3.)
So, I start modelling the problem in the plane: I roll up the surface of the cone which turns out to be the quarter of a circle \(\left(r=20, \operatorname{arc}=10 \pi \rightarrow \alpha=90^{\circ}\right)\). If you cut the surface along a slant height through the point marking the spider, then you can easily read off the distance as the diagonal of a square (see the following DERIVE construction).
I generalize with slant height \(s_{-}\)and angle \(a\) of the sector given (instead of the diameter \(d\)). So, we need a sector with radius \(s_{-}\)and angle \(a\). The center of the circle is \(S\).
I install sliders for \(s_{-}\)with \(0 \leq s_{-} \leq 20\) (50 intervals), \(a\) with \(0 \leq a \leq 2 \pi\) (32 intervals) and parameter \(t\) with \(0 \leq t \leq 1\) (for plotting the arc).
\[
\begin{aligned}
& S:=\left[0, s_{-}\right] \\
& A:=\left[s_{-} \cdot \cos \left(\frac{3 \cdot \pi}{2}-\frac{a}{2}\right), s_{-}+s_{-} \cdot \sin \left(\frac{3 \cdot \pi}{2}-\frac{a}{2}\right)\right] \\
& B:=\left[s_{-} \cdot \cos \left(\frac{3 \cdot \pi}{2}+\frac{a}{2}\right), s_{-}+s_{-} \cdot \sin \left(\frac{3 \cdot \pi}{2}+\frac{a}{2}\right)\right] \\
& \text { base }:=\left[s_{-} \cdot \cos \left(\frac{3 \cdot \pi}{2}-\frac{a}{2}+t \cdot a\right), s_{-}+s_{-} \cdot \sin \left(\frac{3 \cdot \pi}{2}-\frac{a}{2}+t \cdot a\right)\right]
\end{aligned}
\]
\begin{tabular}{|l|l|l|}
\hline DNL 128 & Josef Böhm: On the Trace of the Spider & P 53 \\
\hline
\end{tabular}

Then I define points \(C\) and \(D\) (start and endpoint od the spider's tour around the cone) and point \(X\) on the base of the circle. \(X\) can be moved in 50 steps by the slider for \(v(0 \leq v \leq 50) . S p\) is the position of the spider on the rolled-up surface.

This is the position belonging to the problem:

And this is a position with angle \(a>\pi\).

Respective calculations can be found in Spider_plane.dfw.
Now let's turn to the 3D model and investigate the space curve of the crawling spider. I really must mention, that Wolfgang Alvermann's treatment was a great support because I could refer to his results. Wolfgang introduced the slant height and the diameter of the cone as variables \({ }^{[* *}\). I took slant height and angle of the sector forming the surface of the cone. I decided to work in degrees!!
Main problem is to take care that the run of the spider = point \(S p\) (variable \(0 \leq u \leq a\)) is synchronous with the run of point \(X\). \((u=\angle \mathrm{CSSp})\).
\[
\begin{aligned}
& \text { \#1: } \quad[\text { CaseMode }:=\text { Sensitive, } s: \in \operatorname{Rea} 1[0, \infty)] \\
& \text { \#2: } \left.\quad\left[r(s, a):=\frac{a^{\circ} \cdot s}{360^{\circ}}, h(s, a):=\sqrt{\left(s^{2}\right.}-r(a, s)^{2}\right)\right] \\
& \# 3: \quad T(s, a):=[0,0, h(s, a)]
\end{aligned}
\]

Base of the cone followed by the cone as wire grid
\#4: \(\quad B P(s, a):=\left[r(s, a) \cdot \cos \left(\frac{s \cdot u^{\circ}}{r(s, a)}\right), r(s, a) \cdot \operatorname{SIN}\left(\frac{s \cdot u^{\circ}}{r(s, a)}\right), 0\right]\)
\#5: \(\operatorname{VECTOR}\left(B P(s, a), u, 0, a, \frac{a}{100}\right)\)
\#6: \(\operatorname{VECTOR}\left([[T(s, a), \operatorname{BP}(s, a)]], u, 0, a, \frac{a}{18}\right)\)
\({ }^{[*]}\) Wolfgang's treatment (in German) is included in MTH128.zip. Thanks, Wolfgang.

\section*{DNL 128}
\(T S p\) is the distance between the top of the cone and the position of the spider depending on u:
\(\operatorname{TSp}(s, a)=\frac{s \cdot \cos \left(\frac{\pi \cdot a}{360}\right)}{2 \cdot \cos \left(\frac{\pi \cdot a}{360}-\frac{\pi \cdot u}{180}\right)}\)
Then, \(S P(s, a)\) is the position of the spider on the surface of the cone which describes the space curve:
\#10: \(\quad \mathrm{SP}(\mathrm{s}, \mathrm{a}):=\mathrm{T}(\mathrm{s}, \mathrm{a})+\frac{\mathrm{TSp}(\mathrm{s}, \mathrm{a}) \cdot(\mathrm{BP}(\mathrm{s}, \mathrm{a})-\mathrm{T}(\mathrm{s}, \mathrm{a}))}{\mathrm{s}}\)
Some screen shots shall illustrate the process:

\begin{tabular}{|l|l|l|}
\hline DNL 128 & Josef Böhm: On the Trace of the Spider & p 55 \\
\hline
\end{tabular}

How does the space curve look for an angle \(a>180^{\circ}\) ?

Strange, isn't it? This is one example.

Wolfgang had a nice idea. He wrote:
You described the distance from the cone tip to the spider's path as \(s(u)=\frac{5 \cdot \sqrt{2}}{\cos \left(\frac{\pi}{4}-u\right)}\). I am
quite sure that you have noticed that there is a small optimization problem hidden (to be honest, I did not, Josef).
\(\left.s^{\prime}(u)=-5 \cdot \sqrt{2} \cdot \frac{\sin \left(\frac{\pi}{4}-u\right)}{\cos ^{2}\left(\frac{\pi}{4}-u\right)}\right\} \rightarrow u=\frac{\pi}{4} \quad \ldots\) as expected!!
\(s^{\prime}(u)=0\)
So, \(s=5 \cdot \sqrt{2}\) zum Punkt \(P=\left(-\frac{5}{4} \sqrt{2} / 0 / \frac{5}{4} \sqrt{15} \cdot(4-\sqrt{2})\right)\)
I introduce a parameter \(0 \leq t \leq 50\) by replacing \(u\) by \(t / 50\) in order to simulate the spider's trace in 50 steps by moving the slider.
And now in large size discrete points.
\begin{tabular}{|l|l|l|}
\hline DNL 128 & Josef Böhm: On the Trace of the Spider & p 56 \\
\hline
\end{tabular}

Finally, let's have a little bit calculus: We will check all our work by calculating the length of the space curve.

It is necessary to convert \(u\) :

Other angles:
\[
\begin{aligned}
& \text { check60 }:=\operatorname{SUBST}\left(\operatorname{SP}(20,60), u, \frac{u}{1^{\circ}}\right) \\
& \text { check60 }:=\left[\frac{5 \cdot \sqrt{3} \cdot \operatorname{CoS}(6 \cdot u)}{6 \cdot \operatorname{SIN}\left(u+\frac{\pi}{3}\right)}, \frac{5 \cdot \sqrt{3} \cdot \operatorname{SIN}(6 \cdot u)}{6 \cdot \operatorname{SIN}\left(u+\frac{\pi}{3}\right)}, \frac{10 \cdot \sqrt{35}}{3}-\frac{5 \cdot \sqrt{105}}{6 \cdot \operatorname{SIN}\left(u+\frac{\pi}{3}\right)}\right]
\end{aligned}
\]
\[
\int_{0}^{\pi / 3} \sqrt{ }\left(\left(\frac{d}{d u} \text { check } 60^{d}\right)^{2}+\left(\frac{d}{d u} \text { check } 60_{2}\right)^{2}+\left(\frac{d}{\text { du }} \text { check } 60_{3}\right)^{2}\right) d u=10
\]
\[
\text { check120 := SUBST }\left(\operatorname{SP}(20,120), \mathrm{u}, \frac{\mathrm{u}}{1^{\circ}}\right)
\]
\[
\text { check120 }:=\left[\frac{5 \cdot \cos (3 \cdot u)}{3 \cdot \operatorname{SIN}\left(u+\frac{\pi}{6}\right)}, \frac{5 \cdot \operatorname{SIN}(3 \cdot u)}{3 \cdot \operatorname{SIN}\left(u+\frac{\pi}{6}\right)}, \frac{40 \cdot \sqrt{2}}{3}-\frac{10 \cdot \sqrt{2}}{3 \cdot \operatorname{SIN}\left(u+\frac{\pi}{6}\right)}\right]
\]
\[
\left.\int_{0}^{2 \cdot \pi / 3} \sqrt{ }\left(\frac{d}{d u} \text { check120 }\right)^{2}+\left(\frac{d}{d u} \text { check120 }\right)^{2}+\left(\frac{d}{d u} \text { check } 120^{d}\right)^{2}\right) d u=10 \cdot \sqrt{3}
\]

DERIVE file: Spider_3D_deg.dfw

\section*{References:}
https://portal.dnb.de/opac/showFullRecord?currentResultId=\%22Kaleidoskop \(\% 22+\) and \(+\% 22\) der \(\% 22+\) and \(+\% 22\) Mathematik \(\% 22 \% 26\) any\¤tPosition=8
https://mathematikalpha.de/wp-content/uploads/2022/06/Hundert Aufgaben.pdf (in German)
https://archive.org/details/kalejdoskop-matematyczny-steinhaus-hugo/page/180/mode/2up (in Polish!!)
\[
\begin{aligned}
& \text { check := SUBST }\left(\operatorname{SP}(20,90), u, \frac{u}{1^{\circ}}\right) \\
& \text { check }:=\left[\frac{5 \cdot \sqrt{2} \cdot \cos (4 \cdot u)}{4 \cdot \operatorname{SIN}\left(u+\frac{\pi}{4}\right)}, \frac{5 \cdot \sqrt{2} \cdot \operatorname{SIN}(4 \cdot u)}{4 \cdot \operatorname{SIN}\left(u+\frac{\pi}{4}\right)}, 5 \cdot \sqrt{15}-\frac{5 \cdot \sqrt{30}}{4 \cdot \operatorname{SIN}\left(u+\frac{\pi}{4}\right)}\right] \\
& \left.\int_{0}^{\pi / 2} \sqrt{ }\left(\int_{-}^{\text {d }} \begin{array}{ll}
\text { du } & \text { check } \\
1
\end{array}\right)^{2}+\left(\begin{array}{l}
\text { d } \\
\frac{\text { du }}{} \\
\text { check } \\
2
\end{array}\right)^{2}+\left(\begin{array}{ll}
\text { d } & \text { check } \\
\text { du } & 3
\end{array}\right)^{2}\right) d u=10 \cdot \sqrt{2}
\end{aligned}
\]```

[^0]: Impressum:
 Medieninhaber: DERIVE User Group, A-3042 Würmla, D'Lust 1, AUSTRIA
 Richtung: Fachzeitschrift
 Herausgeber: Mag. Josef Böhm

