Centres of a Triangle

Teacher Notes

Introduction

The aim of this activity is to investigate some of the centres of a triangle and to discover the Euler Line. The activity enables students to find the centroid, orthocentre, circumcentre and intersection of the angle bisectors and to discover that three of these centres lie on a line. The activity then extends to finding the Nine-point Centre and discovering that this centre also lies on the line, which is revealed to be the Euler Line.
During the activity students also draw the circumcircle and incircle and the ratio the centroid divides each median is investigated at the end.

Resources

TI-Nspire document Centres of a Triangle and a worksheet that supports the activity.

Skills required

Students need to be able to use the construction menus to draw medians, altitudes and perpendicular bisectors (instructions given on the worksheet).

The activity

1). Students construct the 3 medians of the triangle $A B C$.

Find the midpoint of each line and draw the medians.

Label the centroid by
selecting the point.

Grab A, B and C and note that the medians remain concurrent inside the triangle.

Find the point of intersection.

2). Students construct the 3 altitudes of the triangle $A B C$.

Draw the altitudes from A, B and C .

Extend the altitudes on the
handheld and draw them on the worksheet.

Find the point of intersection

Label the orthocentre orth.

Grab A, B and C and note that the altitudes remain concurrent and that the intersection point can lie outside the triangle.

3). Students construct the 3 perpendicular bisectors of the triangle $A B C$.

Draw the perpendicular
bisector of $A B, \ldots$...

Find the point of intersection and label the circumcentre circ.

Draw the circumcircle.

.... $A C$ and $B C$. Grab the end of the lines and extend them.

Grab A, B and C and note that the perpendicular bisectors remain concurrent and that the intersection point can lie outside the triangle.

Enter (4ti) (esc until the screen returns to the one shown on the left.

Hide the perpendicular bisectors.
Grab A, B and C and note that the circumcircle continues to pass trough A, B and C.

Draw the lines on the worksheet.

4). Students construct the 3 angle bisectors of the triangle $A B C$.

Draw the bisector of angle A,

Find the point of intersection and label the incentre inc.

Draw the incircle.

Investgating some centres of a triangle.
Can you discover a connection between any of the four centres? Test it on the next page.

..B and C. Grab the end of the lines and extend them.

Grab A, B and C and note that the angle bisectors remain concurrent and that the intersection point lies inside the triangle.
enter (mtI) ©sc until the screen returns to the one shown on the left.

Hide the angle bisectors. Grab A, B and C and note that the largest circle inside the triangle is the incircle.

Grab A, B and C to see which centres remain inside the triangle.

The 4 centres become the same point when triangle $A B C$ is equilateral.

Draw the lines on the worksheet.

5). Students construct the NINE-POINT CENTRE of the triangle $A B C$.

The first 3 points are the midpoints of $A B, B C$ and $A C$ and are labelled p1, p2 and p3.

To find the centre draw the segment joining p1 and p2.

Find the perpendicular bisector of segment p1p3.

Hide the construction lines.

Fill the circle with white.

Draw the segment joining p1 and p3.

Find the point of intersection.

Draw the circle centre $n p$.

Draw the altitudes from A,...

Find the perpendicular
bisector of segment p1p2.

Label the point np .

...passing through p1, p2, p3.

Find the intersection of the altitude from A with BC .

Find the intersection of the altitude from B with AC,..

Find the intersection of the altitudes from A and B.

Draw the segment from
orth to A,...

Label the point orth.
...label it p5 and find the..

Hide the altitudes.
Label the point ...

.. intersection of the altitude from C with $A B$ (label p 6).

.......orth to C.

Find the midpoints of segment orth A,

.. segment orth B and

$\ldots . \mathrm{P} 7, \ldots .$.

....segment orth C.

The nine points $p 1$ to $p 9$ lie on the circumference of the circle with centre $n p$.

Find the connection between the four centres.

Use the information on the screen to complete the worksheet.

Draw a line between circ and orth.

| 5.2 | 5.3 | 5.4 | ${ }^{*}$ centres of at.v4 $\nabla \quad$ 细X |
| :---: | :---: | :---: | :---: | :---: |

|cent intersection of medians
orth intersection of altitudes
circ intersection of perpendicular bisectors
np nine point centre
The four centres lie on a line.
This line is called the EULER LINE
Move to page 6.1 to see the extension task.

Grab A, B and C to see which centre remains inside triangle

