Thème: Statistiques

Ajustement non linéaire

TI-82 Advanced Edition Python TI-83 Premium CE Edition Python

Enoncé

Suite à un incident nucléaire, des traces de contamination ont été découvertes. Le tableau ci-dessous donne les résultats fournis, heure par heure, par un appareil de mesure de la radioactivité. Les nombres entiers N_i représentent le nombre de particules recueillies par l'appareil en une seconde.

t_i en heure	0	1	2	3	4	5	6
N_i	170	102	63	39	24	16	9
$z_i = \log(N_i)$							

On pose $z_i = \log(N_i)$ pour *i* entier variant de 0 à 6.

1. Compléter le tableau ci-dessus donnant les valeurs de z_i arrondies au centième.

2. Représenter graphiquement le nuage de points de coordonnées (t_i, z_i) .

3. Donner l'équation de la droite de régression linéaire de z en t (arrondir les coefficients à 10^{-3} près) et représenter graphiquement la droite de régression.

Dans la suite, on prendra pour équation de la droite de régression linéaire : z = -0.21t + 2.2.

4. En déduire une expression de N en fonction de t.

5. Lorsque le nombre de particules recueillies est inférieur ou égal à 3, le voyant vert d'un appareil s'allume. Déterminer, par le calcul, le nombre d'heures nécessaires pour voir le voyant vert s'allumer.

1. Compléter un tableau

Pour entrer les données dans les listes de la calculatrice, on appuie sur stats Modifier...

On entre les valeurs t_i dans la liste L_1 et les valeurs de N_i dans la liste L_2 .

Pour calculer automatiquement toutes les valeurs $z_i = \log(N_i)$ on place le curseur sur le nom de la liste L₃ et on entre $\log(L_2)$ et on appuie sur entrer.

Pour obtenir les valeurs avec 2 décimales de précision on se place à

nouveau le curseur sur L_3 et dans **MATHS** onglet **NBRE**, choisir **arrondir** et écrire **arrondir**(L_3 ,2) pour obtenir deux décimales de précision.

L1	L2	L3	Lu	LS	
0	170	2.2304			Г
1	102	2.0086			
2	63	1.7993			
3	39	1.5911			
4	24	1.3802			
5	16	1.2041			
6	9	0.9542			

L3(1)=2.2304489213783

1	L2	Lэ	L4	LS	l
0	170	2.2304			ſ
1	102	2.0086			l
2	63	1.7993			l
3	39	1.5911			l
4	24	1.3802			l
5	16	1.2041			
6	9	0.9542			l

L1 I	L2	La	L4	LS	1
0	170				
1	102				
2	63				
3	39				
4	24				
5	16				
6	9				

L3=109(L2)

.1	L2	Lз	L4	Ls
0	170	2.23		
1	102	2.01		
2	63	1.8		
3	39	1.59		
4	24	1.38		
5	16	1.2		
6	9	0.95		

Ce document est mis à disposition sous licence Creative Commons <u>http://creativecommons.org/licenses/by-nc-sa/2.0/fr/</u>

Thème: Statistiques

Ajustement non linéaire

TI-82 Advanced Edition Python TI-83 Premium CE Edition Python

2. Nuage de points (t_i, z_i)

Pour représenter graphiquement ce nuage de points, on définit le graphique en appuyant sur 2nde m. On fera bien attention d'indiquer que les valeurs des abscisses sont dans L_1 et les valeurs de ordonnées dans L_3 .

Pensez à ajuster la fenêtre automatiquement en appuyant sur [2005].

3. Droite d'ajustement

Pour afficher l'équation de la droite de régression, on appuie sur stats et dans l'onglet CALC on sélectionne 4 :RégLin(ax+b) :

Xliste doit contenir la liste des abscisses : L₁ (appuyer sur 2nd 1).

Yliste doit contenir la liste des ordonnées : L₃ (appuyer sur 2000 3).

Afin d'afficher graphiquement la droite de régression il faut enregistrer l'expression dans Y_1 . Pour cela, dans Enr régéQ on entre Y_1 (accessible dans ver onglet VAR Y et Fonction, puis choisir Y_1) et on termine en sélectionnant Calculer et en appuyant sur entrer.

RégLin 9=ax+b a=-0.21 b=2.224285714 r²=0.9992139092 r=-0.9996068773

On trouve comme équation : z = -0,21t + 2,224 Pour afficher le graphique on appuie sur graphe .

4. Exprimer *N* en fonction de *t*

On a vu que z = -0.21t + 2.2 or $z = \log(N)$ cela nous donne $\log(N) = -0.21t + 2.2$ et donc $N = 10^{-0.21t+2.2}$.

5. Moment où le voyant vert s'allume.

Le voyant vert s'allume lorsque $N \leq 3$ soit avec le modèle $10^{-0,21t+2,2} \leq 3$

d'où $-0.21t + 2.2 \le \log(3)$ et donc $t \ge \frac{2.2 - \log(3)}{0.21}$

On trouve $\frac{2,2-\log(3)}{0,21} \approx 8,2$. Ainsi à partir de la 9^{ème} heure le voyant vers s'allumera.

NORMAL FLOTT AUTO RÉEL RAD MP	Ĩ
Graph1 Graph2 Graph3	
Aff NAff	
Туре: 🚾 🗠 🏊 ษ 🗠 🗠	
Xliste :L1	
Yliste :L3_	
Marque : <u>• +</u> •··	
Couleur: BLEU	

Ce document est mis à disposition sous licence Creative Commons <u>http://creativecommons.org/licenses/by-nc-sa/2.0/fr/</u>