Simulation d'une loi binomiale

TI-82 Advanced Edition Python

TI-83 Premium CE Edition Python

Enoncé

Dans un groupe de 6 personnes, on joue à un jeu de grattage. On simule ce jeu à l'aide de scripts en Python :

- 1. On considère la fonction Python **alea** qui prend comme paramètre un entier **n** et qui renvoie un entier **s**. Soit *X* la variable aléatoire représentant le résultat de cette fonction. Quelle loi suit *X* ?
- 2. On cherche à déterminer une valeur approchée de $p(X \ge 3)$. Compléter le script de la fonction \mathbf{simul} qui prend comme argument un entier \mathbf{p} et qui renvoie une valeur approchée de $p(X \ge 3)$. Exécuter la fonction en prenant $\mathbf{p=500}$.
- 3. A l'aide du triangle de Pascal, donner la valeur de $\binom{6}{0}$, $\binom{6}{1}$ et $\binom{6}{2}$. Puis en déduire p(X=0), p(X=1), p(X=2) et enfin $p(X\leq 2)$ et $p(X\geq 3)$. La valeur approchée trouvée au 2°) est-elle convenable ?
- 4. Représenter graphiquement l'histogramme des valeurs de p(X=k) avec k un entier compris entre 0 et 6.

1. Fonction alea

La fonction **alea** choisit aléatoirement 6 fois de suite, de façon indépendante, un nombre réel compris entre 0 et 1. Si ce nombre est plus petit que 0,3 alors on ajoute 1 au compteur **s**.

A la fin de la boucle, **s** représente le nombre de fois où le nombre aléatoire a été plus petit que 0,3.

On peut donc affirmer que s simule une loi binomiale X de paramètre n=6 et p=0,3.

2. Calcul de probabilité d'une loi binomiale

Dans ce script, **t** représente le nombre de fois où on a obtenu un résultat supérieur ou égal à 3 avec la fonction **alea**.

Ainsi t/p représente la fréquence des résultats où **alea** est supérieure ou égale à 3 ce qui correspond à une valeur approchée de $p(X \ge 3)$.

On trouve $p(X \ge 3) \approx 0.24$.

```
>>> # Shell Reinitialized
>>> # L'exécution de BINGO
>>> from BINGO import #
>>> simul(500)
0.246
>>> simul(500)
0.244
>>> |
```

```
ÉDITEUR: BINGO
LIGNE DU SCRIPT 0011
from random import *
def alea(n):

**s=0

**for i in range(6):

***a=random()

**if a<0.3:

***s=s+1

**return s
```

```
PYTHON SHELL

>>> alea(6)
3
>>> alea(6)
2
>>> alea(6)
1
>>> alea(6)
2
>>> alea(6)
2
>>> alea(6)
2
>>> alea(6)
0
>>> |

Fns... a A # Outils Éditer Script
```


Simulation d'une loi binomiale

TI-82 Advanced Edition Python TI-83 Premium CE Edition Python

3. Calcul de $p(X \ge 3)$

Après avoir dressé le triangle de Pascal, on trouve :

$$\binom{6}{0} = 1 \; ; \; \binom{6}{1} = 6$$

$$\operatorname{et}\binom{6}{2} = 15$$

On peut vérifier ces résultats en calculant les combinaisons dans PROB Combinaison.

On en déduit $p(X = 0) = {6 \choose 0} 0,3^0 \times 0,7^6 \approx 0,118$ $p(X = 1) = {6 \choose 1} 0,3^1 \times 0,7^5 \approx 0,303$ et $p(X = 2) = {6 \choose 2} 0,3^2 \times 0,7^4 \approx 0,324$

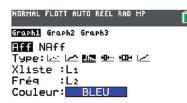
Donc $p(X \le 2) = p(X = 0) + p(X = 1) + p(X = 2) = 0,744$ on en déduit alors $p(X \ge 3) = 1 - p(X < 3) = 1 - p(X \le 2) = 0,256$ ce qui correspond au résultat trouvé dans la question 2.

Ligne 0

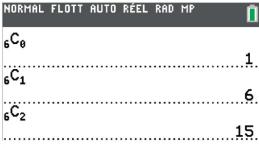
Ligne 1

Ligne 2 Ligne 3 Ligne 4

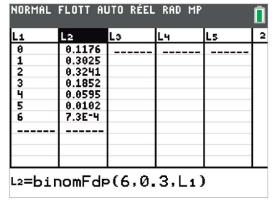
Ligne 5

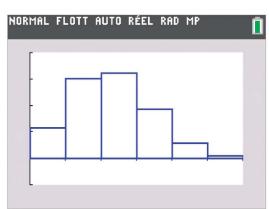

4. Histogramme

On commence par construire les listes en appuyant sur stats Modifier.


Dans la liste L_1 on entre les valeurs entières de k de 0 à 6 et dans L_2 les valeurs de p(X=k) en écrivant **binomFdp(6,0.3,L_1)** en utilisant var

Puis on paramètre le type de graphique (2nd (mu)) souhaité.


Et enfin la fenêtre en appuyant sur fenêtre



L'histogramme apparait en appuyant sur graphe .

HISTORIQUE	Û
0.7 ⁶	0 117640
6*0.3*0.7 ⁵	0.117649
15*0.3 ² *0.7 ⁴	0.302526
	0.324135
0.7°+6*0.3*0	.7 ⁵ +15*0.3 ² *0.7 0.74431

