Battery Life matters!

Hans-Martin Hilbig

Welcome to the milli-micro world!

Agenda

- Welcome to the milli-micro world!
- How long lasts a coin cell?
- The basics: power, capacity, energy, charge
- Energy consumption system components
- Energy consumption ideal vs. reality
- Ways to reduce energy consumption
- EnergyLab: A simple battery model lab setup
- Classroom experiments:
 - 1. Characterize the energy leakage of EnergyLab
 - 2. Experiments to reduce energy consumption
 - 3. How long does a TI-Nspire CXII battery last?
- Summary key learnings

How long lasts a coin cell?

• The only correct answer:

How long lasts a coin cell?

- Excerpt from Varta CR2032 datasheet:
 - Typical capacity: 230mAh, at a continuous load of 5600 Ohms
 - Time to reach end voltage (2.0V) @ 5.6kOhms load: 460h
 - Typical energy: 645mWh
- Let's do some Math:
 - $I_{start} = U/R$
 - $I_{end} = U/R$
 - 460h/24h = 19.2 days
- Let's put things in perspective:
 - One Google search consumes about 300mWh •

=> 2V/5600 Ohms = 357.1 μA

=> 3V/5600 Ohms = 535.6 µA

How long lasts a coin cell?

 Now, how can it be that your bicycle computer runs on a single coin cell for more than one year?

- Let's do some Math (again):
 - 1 year (365 days,24 hours) = 8760 hours
 - $I_{avg} = 230 \text{mAh}/8760 \text{h} = 0.0262 \text{mA} = 26.2 \mu \text{A}$

The basics: power, energy, charge, capacity

- Let's recap some electrical Physics:
 - Power [mW]: P = U * I
 - Energy [mWh]: E = P * t = U * I * t or: $e_{(pulse)} = \int p(t)dt$
 - Charge [Coulomb], [As]: Q = C * U, where C = Capacitance in [F]
 - Battery Capacity [mAh]: "Battery capacity" is a measure of the charge stored by the battery, and is determined by the mass of active material contained in the battery.

Energy consumption - system components

HMH 11/18/2021

Energy consumption – ideal vs. reality

Ideal:

- No leakage
- Linear load characteristic

Real:

- Leakage
- Non-linear load characteristic

Ways to reduce energy consumption

- $E_{total} = \int p_{leakage}(t)dt + \int p_{measure}(t)dt + \int p_{compute}(t)dt + \int p_{radio}(t)dt$
- Minimize the number and the size of the squares!
- 4 key elements to reduce energy consumption: Hardware, software, system architecture and: The user!

EnergyLab - a simple battery model lab setup

Operation	BB2	BB3	BB5
	Digital output	Digital output	Analog input
Charge	Н	L	Measure charge
Discharge	L	Н	Measure discharge
Leakage	L	L	Measure leakage

Symbol	Component	Purpose
R1,R2	Resistor, 100 Ohms	Ensure a gradual charge of the supercap, protect BB2 difital output
D1	Schottky Diode	Prevent a discharge into BB2, if BB2 digital output is low
D2	Red LED	Act as a load to discharge supercap, visualize the discharge process
C1	Supercap 0.5F	Act as a charge storage (a very small battery)
Q1	TTL MOSFET	Act as a switch to turn the load circuit on or off

Teachers Teaching with Technology[™]

EnergyLab - a simple battery model lab setup

1. Characterize the energy leakage of the lab setup

Python module: labsetupcheck.py

- Charges cap to desired voltage level
- Records leakage discharge for 60 sec
- Leakage is non-linear
- Leakage at $U_{cap}=2V$ is about twice as much as at 1.8V

- $\Delta Q = C * \Delta U$ (Faraday's Formula)
- $Q_{\text{leakage}@1.8} = 0.5F * 16mV = 8mCoulomb$ $Q_{\text{leakage}@2.0} = 0.5F * 32mV = 16mCoulomb$

2. Experiments to reduce energy consumption

Finished	cap_	_charge.py	
Task			
charging super	cap to 2	000 m∨	
time to charge:	15 . 31s		
done! Press an	y key		
Des energias 1/0			
Program I/O			
supercap volta	ge : 1987	'n∨	
supercap volta	ge: 1988	βm∨	
supercap volta	ge: 1993	βm∨	
supercap volta	ge: 1999	€mV	

- Charges supercap to desired voltage
- Monitors progress & time to charge

Fillistieu	_cap_	_aiscna	irge.py	
Task				
discharging	supercap) to 1900 m	۱V	
pulse width	: 500 ms j	per sec		
time to disc	harge: 5.2	23s		
done! Pres:	s any key			
Program I/()			
Program I/(supercap ∨) oltage: 19	56m∨, tim	e elapsed: 1	S
Program I/(supercap ∨ supercap ∨) oltage: 19 oltage: 19	56m∨, tim 36m∨, tim	e elapsed: 1 e elapsed: 2	s ? s
Program I/(supercap ∨ supercap ∨ supercap ∨) oltage: 19 oltage: 19 oltage: 19	56m∨, tim 36m∨, tim 19m∨, tim	e elapsed: 1 e elapsed: 2 e elapsed: 3	s 2 s 3 s

- Applies load with desired pulse width at a 1s repetition rate
- Monitors progress and time to discharge to desired level

14

2. Experiments to reduce energy consumption

Running discharge_recorder,py
Task recording data at 10 samples/s for 25s repetition rate: 2s , pulse width: 100ms
Program I/O
time elapsed: 4 s time elapsed: 6 s
time elapsed: 8 s
time elapsed: 10 s

- Allows variable load pulse width and repetition rate
- Allows variable record time and samples/sec
- Please note: Don't exceed # of records > 250

3. How long does a Nspire CXII battery last?

- marathon.py: A project to measure CXII battery life
 - runner.py: Code runs on the TI-Nspire CXII and is transmitting a 0.5Hz signal to OUT1 as long as the CXII battery lasts
 - coach.py: Code runs on a PC, detects loss of the 0.5Hz signal of the TI-Innovator Hub after the handheld battery died and records time stamp

... and here is the answer!

... it depends!

Setup	Result
Black text on a white background, max brightness	5 hrs 4 mins
Black text on a white background, min brightness	6 hrs 30 mins
White text on a black background, max brightness	4 hrs 58 mins
White text on a black background, min brightness	7 hrs 26 mins

Summary – key learnings

- Energy consumption, not power consumption, determines battery life
- Supercaps are a great substitute for batteries in a lab setup
- Faraday's formula: voltage of a battery/capacitor is proportional to the charge stored (Q = C * U)
- Energy leakage is the white elephant in the electrical system
- 4 factors affect battery life: hardware, software, sys architecture, user
- Battery life of a TI-Nspire CXII can be extended by cranking down the display brightness and using a black background color (works with your smartphone, too
)

Hope you enjoyed the presentation!

Helpful links

- Varta CR2032 coin cell datasheet, pictures on slides 4,8 <u>https://products.varta-microbattery.com/applications/mb_data/documents/data_sheets/DS6032.PDF</u>
- Picture of Ciclo Bike Computer, slides 3,6,8: www.ciclosport.com
- Infographics showcase <u>http://www.infographicsshowcase.com/how-much-energy-does-a-google-search-cost-infographic/</u>
- Schottky diode 1N5817 datasheet https://eu.mouser.com/datasheet/2/389/cd00001625-1795544.pdf
- Supercap 0.5F datasheet <u>https://www.vinatech.com/winko/data/product/WEC_5R4_505_QA_1025_data_sheet_%5B%C7%A5%C1%D8%5D_R</u> <u>2.pdf</u>
- Visit T³ eu for a copy of EnergyLab, marathon, textbox, collect_hm Python code <u>https://www.t3europe.eu/</u>
- ... or simply shoot me an email with questions, suggestions, feedback: <u>hm-hilbig@web.de</u>

