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About Blaise Pascal (1623-1662)

 French 
mathematician, 

physicist, inventor, 
philosopher, writer, 

and theologian. 

Picture : Wikimedia

https://commons.wikimedia.org/wiki/File:Blaise_pascal.jpg
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Le traité du triangle arithmétique

What we now 
call “Pascal’s 
triangle” was 
published by 
him in 1655 
as “triangle 
arithmétique”.
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Not so new

● The binomial coefficients were already 
known to Chinese mathematicians 
(although Pascal wasn’t aware).

● Yang Hui 1238-1298 
(published in a book of 
Zhu Shijie, dated 1303)

● They also 
appeared in India, 
many centuries 
before … 

Pictures : Wikimedia
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The triangle rule

A simple rule
F = C+E
10 = 6+4

35 = 20+15
…
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The triangle rule

A simple rule
F = C+E
10 = 6+4

35 = 20+15
…



 7

In modern words

Pascal’s design was later modified in order to better take in 
account  the binomial theorem… “sliding” columns a bit.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1 ← Row 5 (diagonal in Pascal design)

←
 k

=
2

 
(c

ol
um

n)
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In modern words

Pascal’s design was later modified in order to better take in 
account  the binomial theorem.

Column

Row
(diagonal in Pascal’s 

design)1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1 ← n=5

←
 k

=
2 (nk)=(n−1

k ) + (n−1
k−1)
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And the binomial theorem

(1+x )2 = 1+2 x+x 2

(1+ x )3 = 1+3 x+3 x 2+ x3

(1+x )4 = 1+4 x+6 x2+4 x 3+ x4

(1+x )5 = 1+5 x+10 x 2+10 x 3+5 x4+x5

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

(1+ x)n=∑
k=0

n

(nk)xk
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Binomial coefficients, in 4 ways

How can we compute the binomial coefficients ? 
Good news ! Python computes easily with large integers ☺.
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Binomial coefficients, in 4 ways

How can we compute the binomial coefficients ? 
Good news ! Python computes easily with large integers ☺.

● Using the triangle rule: 

● Using a direct formula: [2]  (nk)=
n(n−1)⋯(n−k+1)

k(k−1)⋯1

[1]  (nk)= (n−1
k−1)+(n−1

k )
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Binomial coefficients, in 4 ways

How can we compute the binomial coefficients ? 
Good news ! Python computes easily with large integers ☺.

● Using the triangle rule:

● Using a direct formula: 

● Using a recursive scheme: [3]  (nk)=
n
k (n− 1
k−1)   with  (m0 )= (mm)= 1

[1]  (nk)= (n−1
k−1)+(n−1

k )
[2]  (nk)=

n(n−1)⋯(n−k+1)
k(k−1)⋯1
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Binomial coefficients, in 4 ways

How can we compute the binomial coefficients ? 
Good news ! Python computes easily with large integers ☺.

● Using the triangle rule:

● Using a direct formula: 

● Using a recursive scheme:

● Using factorials: [4]  (nk)=
n !

k !(n−k) !
  with  n != n(n−1)⋯2⋅1  (and 0! = 1) 

[1]  (nk)= (n−1
k−1)+(n−1

k )
[2]  (nk)=

n(n−1)⋯(n−k+1)
k(k−1)⋯1

[3]  (nk)=
n
k (n− 1
k−1)   with  (m0 )= (mm)= 1
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Go on along your own way!

● Now you can program if you want. Start Python on your Nspire CX-
II software or hand-held (or on the 84 CE Python edition, it works 
also), and try to create such a function :

● Your code should remain short (4-5 lines, no more).
● You can test your function asking for binom(500,214) (a bunch of 

digits, finishing by 06000).

def binom(n,k):

  …

  return … 

Hint : the quotient of the division of 
m by j (taken as integers) should be 
coded as m//j (m/j being a float).
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[3]  (nk)=
n
k (n− 1
k−1)

Some possible Python codes

[4]  (nk)=
n !

k !(n−k) !

[2]  (nk)=
n(n−1)⋯(n−k+1)

1⋯(k−1)k
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Some possible Python codes

[2]  (nk)=
n(n−1)⋯(n−k+1)

1⋯(k−1)k
Here we have a recursive function (e.g. a 
function calling itself). Use with care.

… and here an iterative function doing 
the same computations.
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[3]  (nk)=
n
k (n− 1
k−1)

Some possible Python codes

[2]  (nk)=
n(n−1)⋯(n−k+1)

1⋯(k−1)k
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[3]  (nk)=
n
k (n− 1
k−1)

It’s better to avoid 
recursivity (Python 
has its limits…)

Some possible Python codes

[4]  (nk)=
n !

k !(n−k) !

[2]  (nk)=
n(n−1)⋯(n−k+1)

1⋯(k−1)k

Code : binomial.tns
binomial.8xv
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The worse possible code

● Back to scheme [1] (triangle rule): what about recursivity ?

● It works, indeed. But … let’s try it !

def recbin(n,k):
   if k==0 or n==k: return 1
   return recbin(n-1,k)+recbin(n-1,k-1) # triangle rule
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The worse possible code

● Back to scheme [1] (triangle rule): what about recursivity ?

● It works, indeed. But … let’s try it !
● The recbin(25,9) call lasts 30 seconds on my CX-II hand-held.
● Why ? 

def recbin(n,k):
   if k==0 or n==k: return 1
   return recbin(n-1,k)+recbin(n-1,k-1) # triangle rule
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The worse possible code

● Back to scheme [1] (triangle rule): what about recursivity ?

● It works, indeed. But … let’s try it !
● The recbin(25,9) call lasts 30 seconds on my CX-II hand-held.
● Why ? Just doubling the calls at each step … 225>3.107 calls !
● Other codes fail with “maximum recursion depth exceeded”

def recbin(n,k):
   if k==0 or n==k: return 1
   return recbin(n-1,k)+recbin(n-1,k-1) # triangle rule
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One coefficient vs. one row

● Another approach to the binomial coefficients : compute whole 
rows of the triangle, filling a list with the help of the triangle rule [1].

● A single list is here enough if we accept an “overloading” process, 
e.g. starting with L=[1,2,1,0,0] it’s possible to modify terms of L like 
this, processing from right to left :
         L[3] = L[3]+L[2] # gives 1
      L[2] = L[2]+L[1] # gives 3
   L[1] = L[1]+L[0] # gives 3
L[0] unchanged (still 1) ⇒ L=[1,3,3,1,0]
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One coefficient vs. one row

● Another approach to the binomial coefficients : compute whole 
rows of the triangle, filling a list with the help of the triangle rule [1].

● A single list is here enough if we accept an “overloading” process, 
e.g. starting with L=[1,2,1,0,0] it’s possible to modify terms of L like 
this, processing from right to left :
         L[3] = L[3]+L[2] # gives 1
      L[2] = L[2]+L[1] # gives 3
   L[1] = L[1]+L[0] # gives 3
L[0] unchanged (still 1) ⇒ L=[1,3,3,1,0]

Code : binomial.tns
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One coefficient vs. one row

● Caution : processing from 
left to right doesn’t work.

● Another approach to the binomial coefficients : compute whole 
rows of the triangle, filling a list with the help of the triangle rule [1].

● A single list is here enough if we accept an “overloading” process, 
e.g. starting with L=[1,2,1,0,0] it’s possible to modify terms of L like 
this, processing from right to left :
         L[3] = L[3]+L[2] # gives 1
      L[2] = L[2]+L[1] # gives 3
   L[1] = L[1]+L[0] # gives 3
L[0] unchanged (still 1) ⇒ L=[1,3,3,1,0]
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Display the triangle (1)

● Now we can show 
Pascal’s triangle. 

● The code is very similar, 
appending a copy of the 
computed “row” L to a 
list (of lists) P. 

● Caution : if you just code 
P.append(L)
you get a mess ...
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Display the triangle (1)

● Now we can show 
Pascal’s triangle. 

● The code is very similar, 
appending a copy of the 
computed “row” L to a 
list (of lists) P.

● We print here the 
successive lists 
contained in the output 
list (e.g. P).
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Display the triangle (2)

● Colouring the numbers 
according to their parity, some 
patterns seem to appear.
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Display the triangle (2)

● Colouring the numbers 
according to their parity, some 
patterns seem to appear.

● Changing these figures to 
1 = odd, 0 = even and 
later to pixels (1 = 
coloured pixel, 0 = white 
pixel) will give us many 
patterns to explore.
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Display the triangle – graphically (1)

● Stephen Wolfram (author of Mathematica) published a paper 
about this idea in 1984 in his paper “Geometry of binomial 
coefficients” in the Amer. Math. Monthly.

Photo : Wikipedia

https://content.wolfram.com/uploads/sites/34/2020/07/geometry-binomial-coefficients.pdf
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Display the triangle – graphically (2)

● Stephen Wolfram (author of Mathematica) published a paper 
about this idea in 1984 in his paper “Geometry of binomial 
coefficients” in the Amer. Math. Monthly.

● Let’s program this in Python 
with the Nspire CX-II. The list L 
receives successive lines of 
Pascal’s triangle, as before, 
and points are plotted in red 
when the coefficient is odd.

Code : pascal.tns / pascal.8xv

https://content.wolfram.com/uploads/sites/34/2020/07/geometry-binomial-coefficients.pdf
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Display the triangle – graphically (3)

● Stephen Wolfram (author of Mathematica) published a paper 
about this idea in 1984 in the “Geometry of binomial 
coefficients” in the Amer. Math. Monthly.

● Let’s program this in Python 
with the Nspire CX-II. The list L 
receives successive lines of 
Pascal’s triangle, as before, 
and points are plotted in red 
when the coefficient is odd.

● The resulting figure is here ⇒⇒⇒

https://content.wolfram.com/uploads/sites/34/2020/07/geometry-binomial-coefficients.pdf
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Display the triangle – symmetrically

(nk)=( n
n−k)

● Among the many patterns of 
Pascal’s triangle, there is a 
symmetry, due to the formula 
shown here on the right.
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Display the triangle – symmetrically

(nk)=( n
n−k)

● Among the many patterns of 
Pascal’s triangle, there is a 
symmetry, due to the formula 
shown here on the right.

● In order to better “see” this 
symmetry, just dispose the 
triangle in Yang Hui’s way :
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Display the triangle – symmetrically

(nk)=( n
n−k)

● Among the many patterns of 
Pascal’s triangle, there is a 
symmetry, due to the formula 
shown here on the right.

● In order to better “see” this 
symmetry, just dispose the 
triangle in Yang Hui’s way.

● The algorithm is very similar : 
just change the pt function.
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Display the triangle – graphically (4)

This “triangles in triangle” 
design was first imagined by 
Wacław Sierpiński, polish 
mathematician (1882-1969).

Photo : Wikipedia

https://en.wikipedia.org/wiki/Wac%C5%82aw_Sierpi%C5%84ski
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Display the triangle – graphically (5)

This “triangles in triangle” 
design was first imagined by 
Wacław Sierpiński, polish 
mathematician (1882-1969). 
He published an article in 
1915 about the now so-called 
“Sierpiński gasket”, one of the 
first examples of a fractal 
curve (the “fractal” word 
appeared much later).

Photo : Wikipedia

https://en.wikipedia.org/wiki/Wac%C5%82aw_Sierpi%C5%84ski
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Why this ?

The self-similarity of the triangle taken modulo 
a prime number (here, 2) was discovered by 
the french mathematician Édouard Lucas (in 
1878). Lucas was a math teacher whose 
research didn’t receive due support at his 
time, and his main article (excerpt below) isn’t 
easy to read.

Photo : Wikipedia
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An insight into the Lucas theorem (1)

have c (2sc )=2s(2s−1
c−1 )  (because c>0). The RHS has at least s  times 2

in factor, while in the LHS the factor c  has at most s−1  times 2 in factor

since c<2s .  Thus, the binomial (2
s

c ) has to be even.

Lemma.  If 2s>c>0 ,  then (2s

c ) is even. Equivalently, the only odd coefficients

of the 2s  row are the extreme ones.
Consequence.  In the 2s−1  row of the
triangle, all coefficients are odd.

Proof.  Recall the formula (nk)=
n
k (n−1
k−1)  (for k>0), or k(nk)= n(n−1

k−1).  So we

http://www.numdam.org/articles/10.24033/bsmf.127/
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An insight into the Lucas theorem (2)

Lemma.  If 2s>c>0 ,  then (2s

c ) is even. Equivalently, the only odd coefficients

of the 2s  row are the extreme ones.
Consequence.  In the 2s−1  row of the
triangle, all coefficients are odd.
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An insight into the Lucas theorem (2)

We can see this here, looking at the 
rows # 3, 7, 15 (beware : the 
triangle starts with a row #0, 
consisting of a single 1). 
For instance, row #3 consists of 
four ones.

Lemma.  If 2s>c>0 ,  then (2s

c ) is even. Equivalently, the only odd coefficients

of the 2s  row are the extreme ones.
Consequence.  In the 2s−1  row of the
triangle, all coefficients are odd.
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An insight into the Lucas theorem (3)

row r

column c

Lucas again. The binomials 

(rc) , (r+2s

c ) and (r+2s

c+2s)
have the same parity.

We can observe this fact here,
with r=5 , c=2  and 2s=8.
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An insight into the Lucas theorem (3)

row r

row r+2s

column c

The upper “triangle”, made 
of 8 rows, gets a copy 
below ...

Lucas again. The binomials 

(rc) , (r+2s

c ) and (r+2s

c+2s)
have the same parity.

We can observe this fact here,
with r=5 , c=2  and 2s=8.
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An insight into the Lucas theorem (3)

row r

row r+2s

column c column c+2s

The upper “triangle”, made 
of 8 rows, gets a copy 
below …
and another one below 
and to the right.

Lucas again. The binomials 

(rc) , (r+2s

c ) and (r+2s

c+2s)
have the same parity.

We can observe this fact here,
with r=5 , c=2  and 2s=8.
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An insight into the Lucas theorem (3)

row r

row r+2s

column c column c+2s

The upper “triangle”, made 
of 8 rows, gets a copy 
below …
and another one below 
and to the right.

The triangle, taken 

modulo 2, is self-similar.

Lucas again. The binomials 

(rc) , (r+2s

c ) and (r+2s

c+2s)
have the same parity.

We can observe this fact here,
with r=5 , c=2  and 2s=8.
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Finally

● Tom Bannink, Harry Buhrman in
“Quantum Pascal’s Triangle and 
Sierpinski’s carpet” (2017)

consider Pascal’s triangle modulo 
non-prime moduli

https://arxiv.org/pdf/1708.07429.pdf 

before applying these ideas to 
quantum computing.

https://arxiv.org/pdf/1708.07429.pdf
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Finally

● Tom Bannink, Harry Buhrman in
“Quantum Pascal’s Triangle and 
Sierpinski’s carpet” (2017)

consider Pascal’s triangle modulo 
non-prime moduli

https://arxiv.org/pdf/1708.07429.pdf 

before applying these ideas to 
quantum computing.

● Here art & math are meeting.

https://arxiv.org/pdf/1708.07429.pdf
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Let’s play … modulo 4

Code : Sierpinski.tns / SIRPNSKI.8xv
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Bonus : Lucas thorem

In actual notations, Édouard Lucas theorem can be stated as :

 Theorem.  Let A, B be integers, with 0≤B≤A , and p  a prime.
Write A  and B  in p-adic notation as 

A=akp
k+⋯+a1p+a0 ,  and B=bkp

k+⋯+b1p+b0

where 0≤ai ,bi<p  and ak≠0. Then 

(AB)≡(akbk)(
ak−1

bk−1
)⋯(a1

b1
)(a0

b0
) mod p

Corollary.  If 2n>a>b ,  then (2
n+a
b )≡(2

n+a
2n+b)≡(ab)  mod2.

http://www.numdam.org/articles/10.24033/bsmf.127/
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