A journey from binomial coefficients to fractals and mathematical art

Robert CABANE
Mathematician (retired)

About Blaise Pascal (1623-1662)

French mathematician, physicist, inventor, philosopher, writer, and theologian.

Picture: Wikimedia

Le traité du triangle arithmétique

What we now call "Pascal's triangle" was published by him in 1655 as "triangle arithmétique".

Not so new

- The binomial coefficients were already known to Chinese mathematicians (although Pascal wasn't aware).
- Yang Hui 1238-1298 (published in a book of Zhu Shijie, dated 1303)
- They also appeared in India, many centuries before ...

Pictures: Wikimedia

The triangle rule

A simple rule F = C+E 10 = 6+4 35 = 20+15

The triangle rule

A simple rule F = C + E10 = 6 + 435 = 20 + 15

In modern words

Pascal's design was later modified in order to better take in account the binomial theorem... "sliding" columns a bit.

In modern words

Pascal's design was later modified in order to better take in account the binomial theorem.

Row (diagonal in Pascal's design)

Column

And the binomial theorem

How can we compute the binomial coefficients?
Good news! Python computes easily with large integers ©.

How can we compute the binomial coefficients?
Good news! Python computes easily with large integers ©.

- Using the triangle rule:
- Using a direct formula:

[1]
$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

[2]
$$\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k(k-1)\cdots 1}$$

How can we compute the binomial coefficients? Good news! Python computes easily with large integers .

Using the triangle rule:

[1]
$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Using a direct formula:

[2]
$$\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k(k-1)\cdots 1}$$

• Using a recursive scheme: [3]
$$\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}$$
 with $\binom{m}{0} = \binom{m}{m} = 1$

How can we compute the binomial coefficients? Good news! Python computes easily with large integers .

Using the triangle rule:

[1]
$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Using a direct formula:

[2]
$$\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k(k-1)\cdots 1}$$

• Using a recursive scheme: [3]
$$\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}$$
 with $\binom{m}{0} = \binom{m}{m} = 1$

Using factorials:

[4]
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$
 with $n! = n(n-1)\cdots 2\cdot 1$ (and $0! = 1$)

Go on along your own way!

 Now you can program if you want. Start Python on your Nspire CX-II software or hand-held (or on the 84 CE Python edition, it works also), and try to create such a function:

```
def binom(n,k):
...
return ...
```

Hint: the quotient of the division of **m** by **j** (taken as *integers*) should be coded as **m**//**j** (m/j being a float).

- Your code should remain short (4-5 lines, no more).
- You can test your function asking for binom(500,214) (a bunch of digits, finishing by 06000).

[2]
$$\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{1\cdots(k-1)k}$$

$$[3] \binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}$$

$$[4] \binom{n}{k} = \frac{n!}{k!(n-k)!}$$


```
def binom2r(n,k):

if k==0: return 1

return binom2r(n,k-1)*(n-k+1)//k

def binom2i(n,k):

X=1

for i in range(1,k+1): X=(X*(n-i+1))//i

return X
```

Here we have a recursive function (e.g. a function calling itself). Use with care.

... and here an iterative function doing the same computations.


```
def binom2r(n,k):

if k==0: return 1

return binom2r(n,k-1)*(n-k+1)//k

def binom2i(n,k):

\times = 1

for i in range(1,k+1): \times = (\times *(n-i+1))//i

return \times
```

```
def binom3r(n,k):

• if k==0: return 1

• return binom3r(n-1,k-1)*n//k

def binom3i(n,k):

• X=1

• for j in range(1,k+1): X=(X*(n-k+j))//j

• return X

[3] \binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}
```



```
[2]
                                                      def binom3r(n.k):
def binom2r(n,k):
                                                      if k==0: return 1
• if k==0: return 1
                                                      return binom3r(n-1,k-1)*n//k
return binom2r(n,k-1)*(n-k+1)//k
                                                      def binom3i(n,k):
                                                      X=1
def binom2i(n,k):
                                                      for j in range(1,k+1): X=(X*(n-k+j))//j
X=1
                                                      return X
for i in range(1,k+1): X=(X*(n-i+1))//i
return X
                                        def facto(n):
                                       # Factorial of an integer
       It's better to avoid
                                        + * p=1
       recursivity (Python
                                        for k in range(1,n+1): p=p*k
       has its limits...)
                                        return p
                                                                                 [4]
                                        def binom4(n,k):
Code: binomial.tns
                                       # Binomial coefficient, based upon factorials
binomial.8xv
                                        return (facto(n)//facto(k))//facto(n-k)
                                                                                                   18
```

The worse possible code

Back to scheme [1] (triangle rule): what about recursivity ?

```
def recbin(n,k):
   if k==0 or n==k: return 1
   return recbin(n-1,k)+recbin(n-1,k-1) # triangle rule
```

It works, indeed. But ... let's try it!

The worse possible code

Back to scheme [1] (triangle rule): what about recursivity?

```
def recbin(n,k):
  if k==0 or n==k: return 1
  return recbin(n-1,k)+recbin(n-1,k-1) # triangle rule
```

- It works, indeed. But ... let's try it!
- The recbin(25,9) call lasts 30 seconds on my CX-II hand-held.
- Why ?

The worse possible code

Back to scheme [1] (triangle rule): what about recursivity?

```
def recbin(n,k):
   if k==0 or n==k: return 1
   return recbin(n-1,k)+recbin(n-1,k-1) # triangle rule
```

- It works, indeed. But ... let's try it!
- The recbin(25,9) call lasts 30 seconds on my CX-II hand-held.
- Why? Just doubling the calls at each step ... 2²⁵>3.10⁷ calls!
- Other codes fail with "maximum recursion depth exceeded"

One coefficient vs. one row

- Another approach to the binomial coefficients: compute whole rows of the triangle, filling a list with the help of the triangle rule [1].
- A single list is here enough if we accept an "overloading" process, e.g. starting with L=[1,2,1,0,0] it's possible to modify terms of L like this, processing from right to left:

```
L[3] = L[3] + L[2] # gives 1

L[2] = L[2] + L[1] # gives 3

L[1] = L[1] + L[0] # gives 3

L[0] unchanged (still 1) <math>\Rightarrow L = [1,3,3,1,0]
```

One coefficient vs. one row

 Another approach to the binomial coefficients: compute whole rows of the triangle, filling a list with the help of the triangle rule [1].

• A single list is here enough if we accept an "overloading" process, e.g. starting with L=[1,2,1,0,0] it's possible to modify terms of L like

this, processing from right to left:

```
L[3] = L[3] + L[2] # gives 1

L[2] = L[2] + L[1] # gives 3

L[1] = L[1] + L[0] # gives 3

L[0] unchanged (still 1) \Rightarrow L=[1,3,3,1,0]
```

```
def line(n): # computes Pascal's triangle line
• n+1; L=[0]*n; L[0]=1 #initializations
• for i in range(n):
• of or j → range(i,0,-1): # RTL
• overwriting
• return L
```

Code: binomial.tns

One coefficient vs. one row

 Another approach to the binomial coefficients: compute whole rows of the triangle, filling a list with the help of the triangle rule [1].

• A single list is here enough if we accept an "overloading" process, e.g. starting with L=[1,2,1,0,0] it's possible to modify terms of L like

this, processing from right to left:

```
L[3] = L[3] + L[2] # gives 1

L[2] = L[2] + L[1] # gives 3

L[1] = L[1] + L[0] # gives 3

L[0] unchanged (still 1) \Rightarrow L=[1,3,3,1,0]
```

 Caution : processing from left to right doesn't work.

```
>>>line(7)
[1, 7, 21, 35, 35, 21, 7, 1]
>>>line(8)
[1, 8, 28, 56, 70, 56, 28, 8, 1]
```

Display the triangle (1)

- Now we can show Pascal's triangle.
- The code is very similar, appending a <u>copy</u> of the computed "row" L to a list (of lists) P.
- Caution: if you just code
 P.append(L)
 you get a mess ...

```
def line(n): # computes a Pascal's triangle line
• • n=n+1 ; L=[0]*n ; L[0]=1 #initializations
for i in range(n):
*** for j in range(i,0,-1): # RTL
* * * * * * L[j]=L[j-1]+L[j] # overwriting
return L
def triangle(n): # prints Pascal's triangle
****n=n+1; P=[]
* * * * L=[0]*n ; L[0]=1 #initializations
for i in range(n):
*** * * * * for j in range(i,0,-1): # RTL
************L[j]=L[j-1]+L[j] # overwriting
*******# list(L) creates a new list from L
P.append(list(L))
* * * * return P
```

Display the triangle (1)

- Now we can show Pascal's triangle.
- The code is very similar, appending a <u>copy</u> of the computed "row" L to a list (of lists) P.
- We print here the successive lists contained in the output list (e.g. P).

```
>>for s in triangle(11): print(s)
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[1, 3, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0]
[1, 4, 6, 4, 1, 0, 0, 0, 0, 0, 0, 0]
[1, 5, 10, 10, 5, 1, 0, 0, 0, 0, 0, 0]
[1, 6, 15, 20, 15, 6, 1, 0, 0, 0, 0, 0]
[1, 7, 21, 35, 35, 21, 7, 1, 0, 0, 0, 0]
[1, 8, 28, 56, 70, 56, 28, 8, 1, 0, 0, 0]
[1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 0, 0]
[1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 0]
[1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1]
```

Display the triangle (2)

 Colouring the numbers according to their parity, some patterns seem to appear.

Display the triangle (2)

- Colouring the numbers according to their parity, some patterns seem to appear.
- Changing these figures to 1 = odd, 0 = even and later to pixels (1 = coloured pixel, 0 = white pixel) will give us many patterns to explore.

Display the triangle – graphically (1)

 Stephen Wolfram (author of Mathematica) published a paper about this idea in 1984 in his paper "Geometry of binomial coefficients" in the Amer. Math. Monthly.

Photo: Wikipedia

Display the triangle – graphically (2)

- Stephen Wolfram (author of Mathematica) published a paper about this idea in 1984 in his paper "Geometry of binomial coefficients" in the Amer. Math. Monthly.
- Let's program this in Python
 with the Nspire CX-II. The list L
 receives successive lines of
 Pascal's triangle, as before,
 and points are plotted in red
 when the coefficient is odd.

```
from ti_draw import *
def pt(i,j): # plot a single point
plot_xy(1+j,1+i,7)
def t(p): # draw the triangle
clear(); set_color(255,0,0)
**n=p+1; L=[0]*n; L[0]=1
for i in range(n):
for j in range(i,-1,-1):
******if i>0: L[i]=L[i-1]+L[j]
***** if L[i]%2==1: pt(i,i)
```

Code:pascal.tns / pascal.8xv

Display the triangle – graphically (3)

- Stephen Wolfram (author of Mathematica) published a paper about this idea in 1984 in the "Geometry of binomial coefficients" in the Amer. Math. Monthly.
- Let's program this in Python
 with the Nspire CX-II. The list L
 receives successive lines of
 Pascal's triangle, as before,
 and points are plotted in red
 when the coefficient is odd.
- The resulting figure is here ⇒⇒⇒

Display the triangle – symmetrically

 Among the many patterns of Pascal's triangle, there is a symmetry, due to the formula shown here on the right.

$$\binom{n}{k} = \binom{n}{n-k}$$

Display the triangle – symmetrically

- Among the many patterns of Pascal's triangle, there is a symmetry, due to the formula shown here on the right.
- In order to better "see" this symmetry, just dispose the triangle in Yang Hui's way:

Display the triangle – symmetrically

- Among the many patterns of Pascal's triangle, there is a symmetry, due to the formula shown here on the right.
- In order to better "see" this symmetry, just dispose the triangle in Yang Hui's way.
- The algorithm is very similar : just change the pt function.

$$\binom{n}{k} = \binom{n}{n-k}$$

Display the triangle – graphically (4)

This "triangles in triangle" design was first imagined by Wacław Sierpiński, polish mathematician (1882-1969).

Photo: Wikipedia

Display the triangle – graphically (5)

This "triangles in triangle" design was first imagined by Wacław Sierpiński, polish mathematician (1882-1969). He published an article in 1915 about the now so-called "Sierpiński gasket", one of the first examples of a fractal curve (the "fractal" word appeared much later).

Photo: Wikipedia

Why this?

The self-similarity of the triangle taken modulo a prime number (here, 2) was discovered by the french mathematician Édouard Lucas (in 1878). Lucas was a math teacher whose research didn't receive due support at his time, and his main article (excerpt below) isn't easy to read.

On a donc, en général, pour p premier,

$$C_m^n \equiv C_{m_1}^{n_1} \times C_{\mu}^{\nu} \pmod{p},$$

 m_1 et n_1 désignant les entiers de $\frac{m}{p}$ et de $\frac{n}{p}$, et μ et ν les résidus de m et de n suivant le module p.

Photo: Wikipedia

An insight into the Lucas theorem (1)

Lemma. If $2^s > c > 0$, then $\binom{2^s}{c}$ is even. Equivalently, the only odd coefficients

of the 2^s row are the extreme ones.

Consequence. In the 2^s-1 row of the triangle, all coefficients are odd.

Proof. Recall the formula $\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}$ (for k>0), or $k \binom{n}{k} = n \binom{n-1}{k-1}$. So we have $c \binom{2^s}{c} = 2^s \binom{2^s-1}{c-1}$ (because c>0). The RHS has at least s times 2

in factor, while in the LHS the factor c has at most s-1 times 2 in factor since $c<2^s$. Thus, the binomial $\binom{2^s}{c}$ has to be even.

An insight into the Lucas theorem (2)

Lemma. If $2^s > c > 0$, then $\binom{2^s}{c}$ is even. Equivalently, the only odd coefficients

of the 2^s row are the extreme ones. Consequence. In the 2^s-1 row of the triangle, all coefficients are odd.

An insight into the Lucas theorem (2)

Lemma. If $2^s > c > 0$, then $\binom{2^s}{c}$ is even. Equivalently, the only odd coefficients

of the 2^s row are the extreme ones. Consequence. In the 2^s-1 row of the triangle, all coefficients are odd.

We can see this here, looking at the rows # 3, 7, 15 (beware : the triangle starts with a row #0, consisting of a single 1). For instance, row #3 consists of four ones.

An insight into the Lucas theorem (3)

row r

$$\binom{r}{c}$$
, $\binom{r+2^s}{c}$ and $\binom{r+2^s}{c+2^s}$

have the same parity.

We can observe this fact here, with r=5, c=2 and $2^s=8$.

row r

row r+2s

Lucas again. The binomials

$$\binom{r}{c}$$
, $\binom{r+2^s}{c}$ and $\binom{r+2^s}{c+2^s}$

have the same parity.

We can observe this fact here, with r=5, c=2 and $2^s=8$.

The upper "triangle", made of 8 rows, gets a copy below ...

An insight into the Lucas theorem (3)

row r

row r+2s

Lucas again. The binomials

$$\binom{r}{c}$$
, $\binom{r+2^s}{c}$ and $\binom{r+2^s}{c+2^s}$

have the same parity.

We can observe this fact here, with r=5, c=2 and $2^s=8$.

The upper "triangle", made of 8 rows, gets a copy below ... and another one below and to the right.

An insight into the Lucas theorem (3)

row r+2s

Lucas again. The binomials

$$\binom{r}{c}$$
, $\binom{r+2^s}{c}$ and $\binom{r+2^s}{c+2^s}$

have the same parity.

We can observe this fact here, with r=5, c=2 and $2^{s}=8$.

The upper "triangle", made of 8 rows, gets a copy below ... and another one below

and to the right.

Finally

 Tom Bannink, Harry Buhrman in "Quantum Pascal's Triangle and Sierpinski's carpet" (2017)

consider Pascal's triangle modulo non-prime moduli

https://arxiv.org/pdf/1708.07429.pdf

before applying these ideas to quantum computing.

Finally

 Tom Bannink, Harry Buhrman in "Quantum Pascal's Triangle and Sierpinski's carpet" (2017)

consider Pascal's triangle modulo non-prime moduli

https://arxiv.org/pdf/1708.07429.pdf before applying these ideas to quantum computing.

Here art & math are meeting.

Let's play ... modulo 4


```
🚼 * Sierpinski4.py
                                                                  3/17
from ti draw import *
def pt(i,j,c):
**if c==0: set color(255,255,255)
* elif c==1: set color(0,0,0)
• elif c==2: set_color(245,176,99)
* else: set_color(255,0,0)
\bullet \circ plot_{xy}(160-i+2*i,1+i,7)
def t(p):
**clear()
* n=p+1 ; L=[0]*n ; L[0]=1
for i in range(n):
for j in range(i,-1,-1):
•••••if j>0:
* * * * * * * * L[j]=L[j-1]+L[j]
••••• pt(i,j,L[j]%4)
```

Code:Sierpinski.tns / SIRPNSKI.8xv

References

- [1] Blaise Pascal, *Traité du triangle arithmétique* (1665). https://gallica.bnf.fr/ark:/12148/btv1b86262012
- [2] Wikipedia, Pascal's Triangle. https://en.wikipedia.org/wiki/Pascal's triangle
- Wikipedia, Wacław_Sierpiński. https://en.wikipedia.org/wiki/Wacław Sierpiński
- [4] Wikipedia, Édouard Lucas. https://fr.wikipedia.org/wiki/Édouard Lucas
- [5] Édouard Lucas, Sur les congruences des nombres eulériens et des coefficients différentiels des fonctions trigonométriques suivant un module premier, Bull. Soc. Math. France, 6 (1878), pp. 49-54.
 - http://www.numdam.org/articles/10.24033/bsmf.127
- [6] N.J. Fine, Binomial coefficients modulo a prime, Amer. Math. Monthly 54 (1947), pp. 589-592
- [7] Stephen Wolfram, Geometry of binomial coefficients, Amer. Math. Monthly 91 (1984), pp. 566-571

Bonus: Lucas thorem

In actual notations, Édouard Lucas theorem can be stated as :

Theorem. Let A, B be integers, with $0 \le B \le A$, and p a prime.

Write A and B in p-adic notation as

$$A = a_k p^k + \dots + a_1 p + a_0$$
, and $B = b_k p^k + \dots + b_1 p + b_0$

where $0 \le a_i, b_i < p$ and $a_k \ne 0$. Then

$$\begin{pmatrix} A \\ B \end{pmatrix} \equiv \begin{pmatrix} a_k \\ b_k \end{pmatrix} \begin{pmatrix} a_{k-1} \\ b_{k-1} \end{pmatrix} \cdots \begin{pmatrix} a_1 \\ b_1 \end{pmatrix} \begin{pmatrix} a_0 \\ b_0 \end{pmatrix} \mod p$$

Corollary. If
$$2^n > a > b$$
, then $\binom{2^n + a}{b} \equiv \binom{2^n + a}{2^n + b} \equiv \binom{a}{b} \mod 2$.