
A journey from binomial coefficients
to fractals and mathematical art

Robert CABANE
Mathematician (retired)

 2

About Blaise Pascal (1623-1662)

 French
mathematician,

physicist, inventor,
philosopher, writer,

and theologian.

Picture : Wikimedia

https://commons.wikimedia.org/wiki/File:Blaise_pascal.jpg

 3

Le traité du triangle arithmétique

What we now
call “Pascal’s
triangle” was
published by
him in 1655
as “triangle
arithmétique”.

 4

Not so new

● The binomial coefficients were already
known to Chinese mathematicians
(although Pascal wasn’t aware).

● Yang Hui 1238-1298
(published in a book of
Zhu Shijie, dated 1303)

● They also
appeared in India,
many centuries
before …

Pictures : Wikimedia

 5

The triangle rule

A simple rule
F = C+E
10 = 6+4

35 = 20+15
…

 6

The triangle rule

A simple rule
F = C+E
10 = 6+4

35 = 20+15
…

 7

In modern words

Pascal’s design was later modified in order to better take in
account the binomial theorem… “sliding” columns a bit.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1 ← Row 5 (diagonal in Pascal design)

←
 k

=
2

(c

ol
um

n)

 8

In modern words

Pascal’s design was later modified in order to better take in
account the binomial theorem.

Column

Row
(diagonal in Pascal’s

design)1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1 ← n=5

←
 k

=
2 (nk)=(n−1

k) + (n−1
k−1)

 9

And the binomial theorem

(1+x)2 = 1+2 x+x 2

(1+ x)3 = 1+3 x+3 x 2+ x3

(1+x)4 = 1+4 x+6 x2+4 x 3+ x4

(1+x)5 = 1+5 x+10 x 2+10 x 3+5 x4+x5

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

(1+ x)n=∑
k=0

n

(nk)xk

 10

Binomial coefficients, in 4 ways

How can we compute the binomial coefficients ?
Good news ! Python computes easily with large integers ☺.

 11

Binomial coefficients, in 4 ways

How can we compute the binomial coefficients ?
Good news ! Python computes easily with large integers ☺.

● Using the triangle rule:

● Using a direct formula: [2] (nk)=
n(n−1)⋯(n−k+1)

k(k−1)⋯1

[1] (nk)= (n−1
k−1)+(n−1

k)

 12

Binomial coefficients, in 4 ways

How can we compute the binomial coefficients ?
Good news ! Python computes easily with large integers ☺.

● Using the triangle rule:

● Using a direct formula:

● Using a recursive scheme: [3] (nk)=
n
k (n− 1
k−1) with (m0)= (mm)= 1

[1] (nk)= (n−1
k−1)+(n−1

k)
[2] (nk)=

n(n−1)⋯(n−k+1)
k(k−1)⋯1

 13

Binomial coefficients, in 4 ways

How can we compute the binomial coefficients ?
Good news ! Python computes easily with large integers ☺.

● Using the triangle rule:

● Using a direct formula:

● Using a recursive scheme:

● Using factorials: [4] (nk)=
n !

k !(n−k) !
 with n != n(n−1)⋯2⋅1 (and 0! = 1)

[1] (nk)= (n−1
k−1)+(n−1

k)
[2] (nk)=

n(n−1)⋯(n−k+1)
k(k−1)⋯1

[3] (nk)=
n
k (n− 1
k−1) with (m0)= (mm)= 1

 14

Go on along your own way!

● Now you can program if you want. Start Python on your Nspire CX-
II software or hand-held (or on the 84 CE Python edition, it works
also), and try to create such a function :

● Your code should remain short (4-5 lines, no more).
● You can test your function asking for binom(500,214) (a bunch of

digits, finishing by 06000).

def binom(n,k):

 …

 return …

Hint : the quotient of the division of
m by j (taken as integers) should be
coded as m//j (m/j being a float).

 15

[3] (nk)=
n
k (n− 1
k−1)

Some possible Python codes

[4] (nk)=
n !

k !(n−k) !

[2] (nk)=
n(n−1)⋯(n−k+1)

1⋯(k−1)k

 16

Some possible Python codes

[2] (nk)=
n(n−1)⋯(n−k+1)

1⋯(k−1)k
Here we have a recursive function (e.g. a
function calling itself). Use with care.

… and here an iterative function doing
the same computations.

 17

[3] (nk)=
n
k (n− 1
k−1)

Some possible Python codes

[2] (nk)=
n(n−1)⋯(n−k+1)

1⋯(k−1)k

 18

[3] (nk)=
n
k (n− 1
k−1)

It’s better to avoid
recursivity (Python
has its limits…)

Some possible Python codes

[4] (nk)=
n !

k !(n−k) !

[2] (nk)=
n(n−1)⋯(n−k+1)

1⋯(k−1)k

Code : binomial.tns
binomial.8xv

 19

The worse possible code

● Back to scheme [1] (triangle rule): what about recursivity ?

● It works, indeed. But … let’s try it !

def recbin(n,k):
 if k==0 or n==k: return 1
 return recbin(n-1,k)+recbin(n-1,k-1) # triangle rule

 20

The worse possible code

● Back to scheme [1] (triangle rule): what about recursivity ?

● It works, indeed. But … let’s try it !
● The recbin(25,9) call lasts 30 seconds on my CX-II hand-held.
● Why ?

def recbin(n,k):
 if k==0 or n==k: return 1
 return recbin(n-1,k)+recbin(n-1,k-1) # triangle rule

 21

The worse possible code

● Back to scheme [1] (triangle rule): what about recursivity ?

● It works, indeed. But … let’s try it !
● The recbin(25,9) call lasts 30 seconds on my CX-II hand-held.
● Why ? Just doubling the calls at each step … 225>3.107 calls !
● Other codes fail with “maximum recursion depth exceeded”

def recbin(n,k):
 if k==0 or n==k: return 1
 return recbin(n-1,k)+recbin(n-1,k-1) # triangle rule

 22

One coefficient vs. one row

● Another approach to the binomial coefficients : compute whole
rows of the triangle, filling a list with the help of the triangle rule [1].

● A single list is here enough if we accept an “overloading” process,
e.g. starting with L=[1,2,1,0,0] it’s possible to modify terms of L like
this, processing from right to left :
 L[3] = L[3]+L[2] # gives 1
 L[2] = L[2]+L[1] # gives 3
 L[1] = L[1]+L[0] # gives 3
L[0] unchanged (still 1) ⇒ L=[1,3,3,1,0]

 23

One coefficient vs. one row

● Another approach to the binomial coefficients : compute whole
rows of the triangle, filling a list with the help of the triangle rule [1].

● A single list is here enough if we accept an “overloading” process,
e.g. starting with L=[1,2,1,0,0] it’s possible to modify terms of L like
this, processing from right to left :
 L[3] = L[3]+L[2] # gives 1
 L[2] = L[2]+L[1] # gives 3
 L[1] = L[1]+L[0] # gives 3
L[0] unchanged (still 1) ⇒ L=[1,3,3,1,0]

Code : binomial.tns

 24

One coefficient vs. one row

● Caution : processing from
left to right doesn’t work.

● Another approach to the binomial coefficients : compute whole
rows of the triangle, filling a list with the help of the triangle rule [1].

● A single list is here enough if we accept an “overloading” process,
e.g. starting with L=[1,2,1,0,0] it’s possible to modify terms of L like
this, processing from right to left :
 L[3] = L[3]+L[2] # gives 1
 L[2] = L[2]+L[1] # gives 3
 L[1] = L[1]+L[0] # gives 3
L[0] unchanged (still 1) ⇒ L=[1,3,3,1,0]

 25

Display the triangle (1)

● Now we can show
Pascal’s triangle.

● The code is very similar,
appending a copy of the
computed “row” L to a
list (of lists) P.

● Caution : if you just code
P.append(L)
you get a mess ...

 26

Display the triangle (1)

● Now we can show
Pascal’s triangle.

● The code is very similar,
appending a copy of the
computed “row” L to a
list (of lists) P.

● We print here the
successive lists
contained in the output
list (e.g. P).

 27

Display the triangle (2)

● Colouring the numbers
according to their parity, some
patterns seem to appear.

 28

Display the triangle (2)

● Colouring the numbers
according to their parity, some
patterns seem to appear.

● Changing these figures to
1 = odd, 0 = even and
later to pixels (1 =
coloured pixel, 0 = white
pixel) will give us many
patterns to explore.

 29

Display the triangle – graphically (1)

● Stephen Wolfram (author of Mathematica) published a paper
about this idea in 1984 in his paper “Geometry of binomial
coefficients” in the Amer. Math. Monthly.

Photo : Wikipedia

https://content.wolfram.com/uploads/sites/34/2020/07/geometry-binomial-coefficients.pdf

 30

Display the triangle – graphically (2)

● Stephen Wolfram (author of Mathematica) published a paper
about this idea in 1984 in his paper “Geometry of binomial
coefficients” in the Amer. Math. Monthly.

● Let’s program this in Python
with the Nspire CX-II. The list L
receives successive lines of
Pascal’s triangle, as before,
and points are plotted in red
when the coefficient is odd.

Code : pascal.tns / pascal.8xv

https://content.wolfram.com/uploads/sites/34/2020/07/geometry-binomial-coefficients.pdf

 31

Display the triangle – graphically (3)

● Stephen Wolfram (author of Mathematica) published a paper
about this idea in 1984 in the “Geometry of binomial
coefficients” in the Amer. Math. Monthly.

● Let’s program this in Python
with the Nspire CX-II. The list L
receives successive lines of
Pascal’s triangle, as before,
and points are plotted in red
when the coefficient is odd.

● The resulting figure is here ⇒⇒⇒

https://content.wolfram.com/uploads/sites/34/2020/07/geometry-binomial-coefficients.pdf

 32

Display the triangle – symmetrically

(nk)=(n
n−k)

● Among the many patterns of
Pascal’s triangle, there is a
symmetry, due to the formula
shown here on the right.

 33

Display the triangle – symmetrically

(nk)=(n
n−k)

● Among the many patterns of
Pascal’s triangle, there is a
symmetry, due to the formula
shown here on the right.

● In order to better “see” this
symmetry, just dispose the
triangle in Yang Hui’s way :

 34

Display the triangle – symmetrically

(nk)=(n
n−k)

● Among the many patterns of
Pascal’s triangle, there is a
symmetry, due to the formula
shown here on the right.

● In order to better “see” this
symmetry, just dispose the
triangle in Yang Hui’s way.

● The algorithm is very similar :
just change the pt function.

 35

Display the triangle – graphically (4)

This “triangles in triangle”
design was first imagined by
Wacław Sierpiński, polish
mathematician (1882-1969).

Photo : Wikipedia

https://en.wikipedia.org/wiki/Wac%C5%82aw_Sierpi%C5%84ski

 36

Display the triangle – graphically (5)

This “triangles in triangle”
design was first imagined by
Wacław Sierpiński, polish
mathematician (1882-1969).
He published an article in
1915 about the now so-called
“Sierpiński gasket”, one of the
first examples of a fractal
curve (the “fractal” word
appeared much later).

Photo : Wikipedia

https://en.wikipedia.org/wiki/Wac%C5%82aw_Sierpi%C5%84ski

 37

Why this ?

The self-similarity of the triangle taken modulo
a prime number (here, 2) was discovered by
the french mathematician Édouard Lucas (in
1878). Lucas was a math teacher whose
research didn’t receive due support at his
time, and his main article (excerpt below) isn’t
easy to read.

Photo : Wikipedia

 38

An insight into the Lucas theorem (1)

have c (2sc)=2s(2s−1
c−1) (because c>0). The RHS has at least s times 2

in factor, while in the LHS the factor c has at most s−1 times 2 in factor

since c<2s . Thus, the binomial (2
s

c) has to be even.

Lemma. If 2s>c>0 , then (2s

c) is even. Equivalently, the only odd coefficients

of the 2s row are the extreme ones.
Consequence. In the 2s−1 row of the
triangle, all coefficients are odd.

Proof. Recall the formula (nk)=
n
k (n−1
k−1) (for k>0), or k(nk)= n(n−1

k−1). So we

http://www.numdam.org/articles/10.24033/bsmf.127/

 39

An insight into the Lucas theorem (2)

Lemma. If 2s>c>0 , then (2s

c) is even. Equivalently, the only odd coefficients

of the 2s row are the extreme ones.
Consequence. In the 2s−1 row of the
triangle, all coefficients are odd.

 40

An insight into the Lucas theorem (2)

We can see this here, looking at the
rows # 3, 7, 15 (beware : the
triangle starts with a row #0,
consisting of a single 1).
For instance, row #3 consists of
four ones.

Lemma. If 2s>c>0 , then (2s

c) is even. Equivalently, the only odd coefficients

of the 2s row are the extreme ones.
Consequence. In the 2s−1 row of the
triangle, all coefficients are odd.

 41

An insight into the Lucas theorem (3)

row r

column c

Lucas again. The binomials

(rc) , (r+2s

c) and (r+2s

c+2s)
have the same parity.

We can observe this fact here,
with r=5 , c=2 and 2s=8.

 42

An insight into the Lucas theorem (3)

row r

row r+2s

column c

The upper “triangle”, made
of 8 rows, gets a copy
below ...

Lucas again. The binomials

(rc) , (r+2s

c) and (r+2s

c+2s)
have the same parity.

We can observe this fact here,
with r=5 , c=2 and 2s=8.

 43

An insight into the Lucas theorem (3)

row r

row r+2s

column c column c+2s

The upper “triangle”, made
of 8 rows, gets a copy
below …
and another one below
and to the right.

Lucas again. The binomials

(rc) , (r+2s

c) and (r+2s

c+2s)
have the same parity.

We can observe this fact here,
with r=5 , c=2 and 2s=8.

 44

An insight into the Lucas theorem (3)

row r

row r+2s

column c column c+2s

The upper “triangle”, made
of 8 rows, gets a copy
below …
and another one below
and to the right.

The triangle, taken

modulo 2, is self-similar.

Lucas again. The binomials

(rc) , (r+2s

c) and (r+2s

c+2s)
have the same parity.

We can observe this fact here,
with r=5 , c=2 and 2s=8.

 45

Finally

● Tom Bannink, Harry Buhrman in
“Quantum Pascal’s Triangle and
Sierpinski’s carpet” (2017)

consider Pascal’s triangle modulo
non-prime moduli

https://arxiv.org/pdf/1708.07429.pdf

before applying these ideas to
quantum computing.

https://arxiv.org/pdf/1708.07429.pdf

 46

Finally

● Tom Bannink, Harry Buhrman in
“Quantum Pascal’s Triangle and
Sierpinski’s carpet” (2017)

consider Pascal’s triangle modulo
non-prime moduli

https://arxiv.org/pdf/1708.07429.pdf

before applying these ideas to
quantum computing.

● Here art & math are meeting.

https://arxiv.org/pdf/1708.07429.pdf

 47

Let’s play … modulo 4

Code : Sierpinski.tns / SIRPNSKI.8xv

References
[1] Blaise Pascal, Traité du triangle arithmétique (1665).

https://gallica.bnf.fr/ark:/12148/btv1b86262012
[2] Wikipedia, Pascal’s Triangle. https://en.wikipedia.org/wiki/Pascal's_triangle
[3] Wikipedia, Wacław_Sierpiński.

https://en.wikipedia.org/wiki/Wacław_Sierpiński
[4] Wikipedia, Édouard Lucas. https://fr.wikipedia.org/wiki/Édouard_Lucas
[5] Édouard Lucas, Sur les congruences des nombres eulériens et des

coefficients différentiels des fonctions trigonométriques suivant un module
premier, Bull. Soc. Math. France, 6 (1878), pp. 49-54.
http://www.numdam.org/articles/10.24033/bsmf.127

[6] N.J. Fine, Binomial coefficients modulo a prime, Amer. Math. Monthly 54
(1947), pp. 589-592

[7] Stephen Wolfram, Geometry of binomial coefficients, Amer. Math. Monthly
91 (1984), pp. 566-571

https://gallica.bnf.fr/ark:/12148/btv1b86262012
https://en.wikipedia.org/wiki/Pascal's_triangle
https://en.wikipedia.org/wiki/Wac%C5%82aw_Sierpi%C5%84ski
https://fr.wikipedia.org/wiki/%C3%89douard_Lucas
http://www.numdam.org/articles/10.24033/bsmf.127

 49

Bonus : Lucas thorem

In actual notations, Édouard Lucas theorem can be stated as :

 Theorem. Let A, B be integers, with 0≤B≤A , and p a prime.
Write A and B in p-adic notation as

A=akp
k+⋯+a1p+a0 , and B=bkp

k+⋯+b1p+b0

where 0≤ai ,bi<p and ak≠0. Then

(AB)≡(akbk)(
ak−1

bk−1
)⋯(a1

b1
)(a0

b0
) mod p

Corollary. If 2n>a>b , then (2
n+a
b)≡(2

n+a
2n+b)≡(ab) mod2.

http://www.numdam.org/articles/10.24033/bsmf.127/

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49

