T^3 Europe, Brussels – March 2017 – Nevil Hopley Simulation of χ^2 Test of Association in a Two-Way Contingency Table

The following code simulates a test of association for any two-way contingency table and compares it to the appropriate χ^2 distribution.

It is made of two parts – a program [called *chisquared*] which calls a function [called *simulate*] There are no restrictions on the size of the contingency table.

There are no checks on the magnitudes of the expected frequencies.

The following pages show the code, and then explain line-by-line how each part of the code works, with the help of an example.

Line

- 1 Define chisquared(matrix,trials)=
- 2 Prgm
- 3 Local coltotals, rowtotals, i, j, k, tally
- 4 coltotals:=mat list(sum(matrix))
- 5 rowtotals:=mat list(sum(matrix^T))
- 6 chisquaredvalues:={[]}
- 7 For i,1,trials
- 8 tally:=0 · matrix
- 9 For *j*,1,sum(*coltotals*)
- 10 tally:=tally+simulate(coltotals,rowtotals)
- 11 EndFor
- 12 χ²2way tally
- 13 chisquaredvalues:=augment(chisquaredvalues,{ stat.χ²})
- 14 EndFor
- 15 χ²2way matrix
- 16 k:=countIf(chisquaredvalues,?>stat.χ²)
- 17 Disp " χ^2 value for observed matrix is ",*stat*. χ^2
- 18 Disp "Theory predicts p-value of ",stat.PVal
- 19 Disp "Simulation gave p-value of ", k," out of ", trials," = ", $\frac{k \cdot 1}{trials}$
- 20 EndPrgm

Line	Explanation	Example	
1.	Defines input of observed frequency matrix and	 ◆ 1.1 ▶ *Doc - DEG 4 × X 	
	number of simulated trials	$f_{O}:= \begin{bmatrix} 31 & 15\\ 16 & 22 \end{bmatrix} \qquad \begin{bmatrix} 31 & 15\\ 16 & 22 \end{bmatrix}$	
2.	Start of Program		
3.	Define local variables so that they don't appear on the variable list after the program ends.		
4.	By default, the sum() command returns a matrix of	sum(fo) [47 37]	
	column totals. This is then converted to a list.	coltotals:=mat▶list(sum(fo)) {47,37}	
5.	Return a list of row totals by first taking the transpose		
	of the observed frequency matrix.	$rowtotals:=mat$ $list(sum(fo^{\dagger}))$ {46,38}	
6.	Define the variable to hold the values of the chisquared	$chisquaredvalues:=\{ [] \} $ {[] }	
-	statistic for each of the simulated trials.	U	
<u>7.</u> 8.	Start of loop for the number of trials Define a matrix that's the same dimensions as the	[
8.	observed frequency matrix, but contains all zeros.	$tally = 0 fo \qquad 0 0 \\ 0 0 $	
9.	sum(<i>coltotals</i>) returns the total from whole matrix and		
9.	this controls the number of times that <i>simulate</i> is called	sum(coltotals) 84	
10.		In effect, this line becomes	
10.	elements are zero and one element is 1. This is then	$tally:=tally+\begin{bmatrix} 0 & 1 \end{bmatrix}$	
	added to the <i>tally</i>		
11.	End when the <i>tally</i> matrix has the same total as the	For example, after 84 simulations	
	observed frequency matrix.	tally [20 26 27 11]	
12.	Conduct a chi-squared test on the <i>tally</i> matrix. The chi-squared statistic value is stored in the stat variable <i>stat</i> . χ^2	χ ² 2way tally: stat.results ["Title" "χ ² 2-way Test" "χ ² " 6.41996 "PVal" 0.011284 "df" 1. "ExpMatrix" "[]" "CompMatrix" "[]"	
13.	Store the resulting chi-squared statistic for the simulated <i>tally</i> matrix	chisquaredvalues {6.41996}	
14.	End after the specified number of trials, so that <i>chisquaredvalues</i> is then a long list of simulated values.	chisquaredvalues {6.41996,4.67321,2.78436,5.1184,3.11245	
15.	Conduct a chi-squared test on the original observed frequency matrix, <i>fo</i>	χ² 2way fo: stat.results "Title" "χ² 2-way Test" "χ²" 5.39862 "PVal" 0.020153 "df" 1. "ExpMatrix" "[]" "CompMatrix" "[]"	
16.	Count how many of the simulated chi-squared statistic values are greater than the statistic for the original observed frequency matrix	countIf(chisquaredvalues,?>5.39862) 2	
17.	Display the chi-squared statistic for the observed frequency matrix		
18.			
19.			
	· · · · · · · · · · · · · · · · · · ·		

Line

- Define simulate(coltotals,rowtotals)=
- 2 Func
- 3 Local colbins, rowbins, colpath, rowpath, col, row
- 4 colbins:=augment({0},cumulativeSum(coltotals))
- 5 rowbins:=augment({0},cumulativeSum(rowtotals))
- 6 colpath:=sum(coltotals) · rand()
- 7 rowpath:=sum(rowtotals) · rand()
- 8 *col*:=0
- 9 While colpath>colbins[col+1]
- 10 col:=col+1
- 11 EndWhile
- 12 row:=0
- 13 While rowpath>rowbins row+1]
- 14 row:=row+1
- 15 EndWhile
- 16 Return constructMat $\begin{pmatrix} 1, row=r \text{ and } col=c \\ 0, 0 \end{pmatrix}$, $r, c, \dim(rowtotals), \dim(coltotals) \end{pmatrix}$
- 17 EndFunc

< 1.1 1.2 1.3 🕨 *ChiSquarRxC 😓 🛛 DEG 🕻 🗙						
$f_0 := \begin{bmatrix} 18 & 1 \\ 16 & 1 \\ 4 & 1 \end{bmatrix}$	2 4 6 9 3 8	[18 16 4	12 4 16 9 13 8			
chisquared(f0,500)						
χ² value for observed matrix is 9.07879 Theory predicts p-value of 0.05916						
Simulation gave p-value of 21 out of 500 = 0.042						

Line	Explanation	Example
1.	Defines inputs which are the lists: row-totals and	rowtotals {46,38}
	column-totals. The size of the matrix is therefore given	coltotals {47,37}
	by the dimensions of these lists.	
2.	Start of function	
3.	Define local variables so that they don't appear on the	
	variable list after the function ends.	
4.	Define the column intervals into which simulated	cumulativeSum(coltotals) {47,84}
	values will go.	<pre>augment({ 0 },cumulativeSum(coltotals))</pre>
	In this example, 0 <value≤47 47<value≤84<="" or="" th=""><th>{0,47,84}</th></value≤47>	{0,47,84}
5.	And similarly for the rows.	augment({0},cumulativeSum(rowtotals))
	In this example, 0 <value≤46 46<value≤84<="" or="" td=""><td>{0,46,84}</td></value≤46>	{0,46,84}
6.	Define a random number between 0 and 84 that will	sum(coltotals) 84
	then fall into either the first column or the second	sum(coltotals) rand() 12.3218
	column.	
	Here, as 0<12.3218≤47, it will go into column 1.	
7.	Define a random number between 0 and 84 that will	sum(rowtotals) 84
	then fall into either the first row or the second row.	sum(rowtotals) rand() 61.6402
	Here, as $46 < 61.6402 \le 84$, it will go into row 2.	
8.	Set <i>col</i> variable for which column to put the value in.	
9.	Continue the loop when the value is greater than the	Compare 12.3218 to each of 47 and
	next cutoff.	84
	Therefore, we exit the loop when it's not greater.	
10.	, ,	
	Endloop	
12.	1	
13.	1 0	Compare 61.6402 to each of 46 and
	next cutoff.	84
14	Therefore, we exit the loop when it's not greater.	
<u> </u>	Increment row number by one	
15.	End loop	
16.	Create a matrix with a 1 in the correct row and column, and 0's elsewhere.	constructMat $\begin{cases} 1, 2=r \text{ and } 1=c \\ 0, \text{ Else} \end{cases}$, r, c, 2, 2
	In this example the '1' is in <i>row</i> 2 and <i>col</i> 1.	

17. End of function

This function ensures that over sufficient repetitions, the correct proportions of 1's and 0's turn up in the matrix's elements, according to the row and column totals provided to it.

Authored by Nevil Hopley February 2017 www.CalculatorSoftware.co.uk