

Hedgehog – a 3D graphics library in Python

Veit Berger, Hans-Martin Hilbig

 Teachers Teaching with TechnologyTM

Hedgehog – a 3D graphics library in Python

2020 T3 Europe - 2 -

Overview

Two-dimensional libraries like turtlegraphics are popular tools to make students familiar with
basic coding structures in Computer Science lessons. Aimed to train students in spatial
notion skills, teachers of the Pädagogischen Hochschule Ludwigsburg created a 3D-graphics
coding library in Logo as early as in 1987[1]. This library has become popular under the
name ‘Raumigel’ which translates to ‘spatial hedgehog’, to illustrate the difference to the 2-
dimensional ‘turtle’ graphics library. Hedgehog1 is based on Raumigel1, with the only
difference in adapting names of the raumigel1 methods to English language [4].
Since the object-oriented version of hedgehog had been successfully ported to Pascal and
Delphi [2], a Python implementation recently has been created to be used in the MicroPython
environment of TI’s most recent release of TI-Nspire-CXII Graphing Calculators. Besides a
brief explanation of the library’s features and methods, this article is focused on practical
applications useful in today’s Computer Science lessons as well as other MINT/STEM
classrooms.

Attributes and Methods of hedgehog

Like known from turtle graphics in the 2-dimensional x-y plane,
hedgehog can freely move in its 3-dimensional space, leaving a
trace with its on-board pen. This trace will be shown as a parallel
projection in cavalier perspective on the 2-dimensional display
canvas of the Nspire-CXII. Hedgehog’s movement in the static
xyz-system is defined in vector graphics, based on the three
unity vectors l (longitudinal), q (transverse) and h (vertical) (see
picture). Besides rotations of the hedgehog around the three
spatial axes, all movements happen along the longitudinal axis
only, with hedgehog facing forward or backward.

The basic movement methods of hedgehog are listed here. All movements scale in pixels, all
angles in degrees:

Method Description
fwd(pixels) / bwd(pixels) Move forward / backward
rt(degrees) / lt(degrees) Rotate to the right, to the left

(rotate around h-axis)
ifwd(degrees) / ibwd(degrees) Incline forward/backward

(rotate around q-axis)
irt(degrees) / ilt(degrees) Incline right/left

(rotate around l-axis)

Miscellaneous methods:

Method Description
clear()
clearscreen()

Clear Graphics Display
Clear Graphics, including hedgehog position

set_rgb(r,g,b) Set color
r, g, b = 0 ... 255

set_text(x,y,text) Show text at x,y pixel coordinates
pen_down() / pen_up() Draw while moving / pause drawing
set_cur() Set hedgehog cursor as small triangle
show_cur() / hide_cur() Show hedgehog cursor / hide hedgehog

cursor

Hedgehog – a 3D graphics library in Python

2020 T3 Europe - 3 -

A useful feature of hedgehog is the ability to rotate objects in 3D space.
Methods to rotate graphical object in 3D space:

Method Description
x_rotation(degrees) Rotate object around the x-axis in 3D space
y_rotation(degrees) Rotate object around the y-axis in 3D space
z_rotation(degrees) Rotate object around the z-axis in 3D space

First steps using hedgehog

Hedgehog is coded as an independent library. There is no need to include the Hedgehog
code in each application document. For the Nspire software to recognize Hedgehog as a
library, copy Hedgehog1.tns in your local PyLib folder of both, the Nspire Handheld and the
Nspire Desktop software:

Handheld: My Documents\PyLib
Windows: C:\Users\YourUserName\Documents\TI-Nspire CX\PyLib

As a second step, press <refresh libraries> under the <Tools> menu of the Nspire Desktop
or press the <doc> button on your handheld, followed by selecting <6 Refresh Libraries>
from the menu, to include Hedgehog1 in the catalog of Nspire Python libraries.

The following screenshot shows the instantiation of the Hedgehog Object, followed by a
simple horizontal movement a hundred pixels long. It is a good practice to show the
Hedgehog cursor at the end of the movement, to aid orientation for the human eye.

Hedgehog – a 3D graphics library in Python

2020 T3 Europe - 4 -

To draw a square in the xy-plane, we take the single line example from above screenshot,
add a 90 degrees turn at the end of the line and repeat this four times in a loop, like shown
here:

Adding another loop of four inclinations in the z-plane after a square is drawn, another three
perspective squares are added, resulting in a 3-dimensional cube. The following compact
code shows how easy it is to draw 3-dimensional objects using Hedgehog:

Hedgehog – a 3D graphics library in Python

2020 T3 Europe - 5 -

Let us center the cube on the screen and implement two powerful rotation methods. Just like
in a 3D CAD program, the cube can be rotated around the x- and y-axis by pressing the
<up><down><left><right> cursor buttons of the Handheld or the PC:

from hedgehog1 import *
from ti_system import get_key

def draw(obj, dist):
 for i in range(4):
 for j in range(4):
 obj.fwd(dist)
 obj.lt(90)
 obj.fwd(dist)
 obj.ifwd(90)
 obj.set_cur()

set_window(-159, 160, -105, 106)
dist = 100
angle = 5
heho = hedgehog()
heho.set_rgb(255, 0, 0)
heho.set_xyz(-dist/2,-dist/2,dist/2)
key = ""
use_buffer()
while key != "esc":
 draw(heho, dist)
 paint_buffer()
 key = get_key(1)
 if key == "left":
 heho.y_rotation(-angle)
 heho.clear()
 if key == "right":
 heho.y_rotation(angle)
 heho.clear()
 if key == "up":
 heho.x_rotation(-angle)
 heho.clear()
 if key == "down":
 heho.x_rotation(angle)
 heho.clear()

Procedure to draw a cube

Center cube in the x-/y-/z-system

Use cursor keys to rotate the cube around its
axes.

Hedgehog – a 3D graphics library in Python

2020 T3 Europe - 6 -

Advanced projects using Hedgehog

Here are some examples to inspire projects for students at different grades and skillsets.

1. Visualization of regular n-cornered prisms

Migrating from a cube object to a regular n-cornered prism is easy. Just the intermediate part
of forward inclination ifwd(angle) needs to be adjusted to the number of corners of the prism,
as shown in this code example:

from hedgehog1 import *
from ti_system import get_key

def draw(obj, l, h, n):
 angle = 360 / n
 for i in range(n):
 for j in range(2):
 obj.fwd(l)
 obj.lt(90)
 obj.fwd(h)
 obj.lt(90)
 obj.fwd(l)
 obj.ifwd(angle)
 obj.set_cur()

length = int(input("Length of base side in pixels: "))
height = int(input("Height in pixels: "))
n = int(input("Number of corners: "))
rot_angle = 5
out_angle = 360 / n
in_angle = (180 - out_angle) / 2
radius = length / 2 / sin(radians(out_angle / 2))

set_window(-159, 160, -105, 106)
heho = hedgehog()
heho.set_rgb(0, 0, 255)
heho.set_txt(-80, 90, "Regular n-cornered prisms")
heho.set_xyz(0, -height / 2, 0)
heho.pen_up()
heho.ifwd(in_angle)
heho.bwd(radius)
heho.ibwd(in_angle)
heho.pen_down()
key = ""
use_buffer()
while key != "esc":
 draw(heho, length, height, n)
 paint_buffer()
 key = get_key(1)
 if key == "left":
 heho.y_rotation(-rot_angle)
 heho.clear()
 if key == "right":
 heho.y_rotation(rot_angle)
 heho.clear()
 if key == "up":
 heho.x_rotation(-rot_angle)
 heho.clear()
 if key == "down":
 heho.x_rotation(rot_angle)
 heho.clear()

Hedgehog – a 3D graphics library in Python

2020 T3 Europe - 7 -

2. Scaled visualization of square pyramids

A square pyramid is given by any length of its base and any height. It should be displayed
true to scale on the screen in such a way that it is not clipped by the screen boundaries even
when rotating around the spatial axes. Both scaled enlargements and reductions should be
possible.

Preliminary considerations:
First, let us consider which angles are suitable for the movement of the hedgehog. In addition
to calculating the length of the pyramid’s side s and the height of its side sh, we can calculate
angles α and β as follows:

Where:

2
2

h

2 2
2 2

h

h

d 2 g

g
s h

4

g d
s s bzw. s h

4 4
g

arctan()
2 h
2 s

arctan()
g

 

 

   

 



 

For true-to-scale representation, we use the shorter side of the 318 x 212 pixel display as a
reference. Let’s assume min = 200 (pixels) for the sake of simplicity.
The largest dimensions of the pyramid are either the diagonal max = d of the pyramid’s base
or the pyramid’s side max = s.
After deciding which of the two lengths is the larger, the scale can be calculated as

min
k 0,8

max
  . Factor 0.8 is used as a safety margin to avoid using the display up to its

boundaries.

Hedgehog – a 3D graphics library in Python

2020 T3 Europe - 8 -

Scaled visualization of square pyramids code example:

from hedgehog1 import *
from ti_system import get_key
from math import sqrt, degrees, atan

def draw(obj, g, h):
 sh = sqrt(h ** 2 + g ** 2 / 4)
 s = sqrt(sh ** 2 + g ** 2 / 4)
 al = degrees(atan(g / h / 2))
 be = degrees(atan(2 * sh / g))
 for i in range(4):
 obj.fwd(g)
 obj.ifwd(90)
 for i in range(4):
 obj.ilt(al)
 obj.lt(be)
 obj.fwd(s)
 obj.rt(2 * be)
 obj.fwd(s)
 obj.lt(be)
 obj.irt(al)
 obj.ifwd(90)
 obj.set_cur()

min = 200
length = float(input("Length of base side in pixels: "))
height = float(input("Height in pixels: "))
d = sqrt(2) * length
s = sqrt(height ** 2 + d ** 2 / 4)
max = d
if max < s: max = s
k = 0.8 * min / max
if k < 1:
 k_rez = 1 / k
 print("Scale: 1 : %1.1f" % k_rez)
else:
 print("Scale: %1.1f : 1" % k)

set_window(-159, 160, -105, 106)
g = k* length
h = k * height
y = h - g / 4 * sin(pi / 4)
angle = 5
heho= hedgehog()
heho.hide_cur()
heho.set_rgb(150, 50, 150)
heho.set_xyz(-g / 2, -y / 2, g / 2)
key = ""
use_buffer()
while key != "esc":
 draw(heho, g, h)
 paint_buffer()
 key = get_key(1)
 if key == "left":
 heho.y_rotation(-angle)
 heho.clear()
 if key == "right":
 heho.y_rotation(angle)
 heho.clear()
 if key == "up":
 heho.x_rotation(-angle)

Hedgehog – a 3D graphics library in Python

2020 T3 Europe - 9 -

 heho.clear()
 if key == "down":
 heho.x_rotation(angle)
 heho.clear()

3. Spatial control of objects

There are several ways to animate the graphical object on the display by using the
x/y/z_rotation() methods of the hedgehog class. Either you code a constant rotation around
one or more of the three orthogonal axes by periodically incrementing the three spatial
angles at a given frequency. Or you let the user control the rotation by scanning the
computer’s keyboard for any of the cursor keys (left, right, up, down) pressed. From science
fiction movies we remember scenes where computer displays have been controlled by
gestures of the users. This can be accomplished by using an accelerometer sensor
connected to the TI-Innovator Hub as the HMI (Human-Machine-Interface).

Preliminary considerations:

Accelerometer sensors are small micro-electro-mechanical systems (MEMS) integrated in a
small package. Accelerometers are widely used in today’s electronic systems, ranging from
inertial shock / crash sensing in Automotive Airbag systems, stabilizing quadcopter drones
up to counting steps or physical movement monitoring by fitness watches or smartphones.
For prototyping and experimental use, accelerometers are available mounted on a printed
circuit board (PCB) and can directly be connected to Microcontroller boards like the TI-
Innovator Hub.
While the applications mentioned above are all based on analyzing the accelerometer’s
dynamic signal waveform, there is also a permanent static signal component which can be
used to determine the spatial orientation of the accelerometer relative to the gravitational
force G. For additional details and a copy of the accelerometer code library, please refer to a
separate publication on T3 Europe [3].

Hedgehog – a 3D graphics library in Python

2020 T3 Europe - 10 -

Code example:

from hedgehog1 import *
from ti_system import get_key

def draw(obj, dist):
 for i in range(4):
 for j in range(4):
 obj.fwd(dist)
 obj.lt(90)
 obj.fwd(dist)
 obj.ifwd(90)
 obj.set_cur()

try:
 from ADXL335_09c import *
 myadxl = adxlc()
 device = True
except:
 device = False

set_window(-159, 160, -105, 106)
dist = 100
angle = 5
heho = hedgehog()
heho.set_rgb(255, 0, 0)
heho.set_xyz(-dist/2,-dist/2,dist/2)
key = ""
use_buffer()
while key != "esc":
 draw(heho, dist)
 paint_buffer()
 if device:
 key = myadxl.get_dirxy(0,0.2)
 if key == "left":
 heho.y_rotation(-angle)
 heho.clear()
 if key == "right":
 heho.y_rotation(angle)
 heho.clear()
 if key == "up":
 heho.x_rotation(-angle)
 heho.clear()
 if key == "down":
 heho.x_rotation(angle)
 heho.clear()
 key = get_key(0)
if device: print(ver())

Procedure to draw a cube.

Looking for presence of the accelerometer
driver library and checking if TI-Hub is
connected. If successful, set HMI flag

If failed, switch to keyboard as the human
machine interface (HMI)

If HMI flag is set, redirect accelerometer data
to control rotation of the cube. Otherwise, use
keyboard data.

Check for <esc> key pressed to terminate
program
For convenience, print the current version of
the accelerometer driver

Hedgehog – a 3D graphics library in Python

2020 T3 Europe - 11 -

Summary:

The Hedgehog library can be implemented as is and used extensively on the TI-nspire CX II
with an amazing performance. It is likely there will be a growing desire for extending the
library while users are practicing their skills. For example, visual distinction between visible
and hidden edges of the object would be just as desirable as variable background colors or
supporting view of the object in a central projection. Here the authors speculate on the
initiative of interested users to expand the hedgehog object class. Suggestions and ideas
can be found under [1], if necessary.

Copyright of picture:
 Hedgehog Page 2:
 https://umbreit.e-bookshelf.de/products/reading-epub/product-id/10980970

Sources:
[1] Löthe, Wölpert, Wolpert; Raumigel - Einführung, Anwendungen, Implementation;
 Informatik und Datenverarbeitung in der Schule, Materialien und Berichte Nr. 7,
 Pädagogische Hochschule Ludwigsburg, 1985
[2] https://www.gymnasium-loebau.de/fachbereiche/naturwissenschaften/informatik
[3] Hilbig, ‘Adding Accelerometer Sensor Library to TI-Innovator using Python’, T3 Europe

Materials Database, Nov 2020
[4] Berger, Hilbig; Der Raumigel unter Python, T3 Deutschland Materialdatenbank, Nov

2020

 Teachers Teaching with TechnologyTM

